Fluent Transitions Between Focused and Peripheral Interaction in Proxemic Interactions

Part of the Human–Computer Interaction Series book series (HCIS)


Proxemic interaction is a vision of computing that employs proxemic relationships to mediate interaction between people and ensembles of various digital devices. In this chapter, we focus on aspects of peripheral interaction in proxemic interactions. We illustrate how to facilitate transitions between interaction outside the attentional field, the periphery, and the center of attention by means of the Proxemic Flow peripheral floor display. We summarize and generalize our findings into two design patterns: slow-motion feedback and gradual engagement. We propose slow-motion feedback as a way to draw attention to actions happening in the background and provide opportunities for intervention, while gradual engagement provides peripheral awareness of action possibilities and discoverability and reveals possible future interactions.


Proxemic interactions Cross-device interaction Slow-motion feedback Gradual engagement Interactive floors 



We thank our collaborators and co-authors of joint publications which formed the basis of the content covered in this chapter: Till Ballendat, Jon Bird, Sebastian Boring, Karin Coninx, Rob Diaz-Morino, Saul Greenberg, Ken Hinckley, Kris Luyten. We also thank Lindsay MacDonald for editing drafts of this book chapter.


  1. Bakker, S., van den Hoven, E., & Eggen, B. (2015). Peripheral interaction: Characteristics and considerations. Personal and Ubiquitous Computing, 19, 239–254. doi: 10.1007/s00779-014-0775-2 CrossRefGoogle Scholar
  2. Ballendat, T., Marquardt, N., & Greenberg, S. (2010). Proxemic interaction: Designing for a proximity and orientation-aware environment. In Proceedings of ITS ’10 (pp. 121–130). New York, NY, USA: ACM.Google Scholar
  3. Bellotti, V., Back, M., Edwards, W. K., et al. (2002). Making sense of sensing systems: Five questions for designers and researchers. In Proceedings of CHI ’02 (pp. 415–422). ACM.Google Scholar
  4. Borchers, J. (2001). A pattern approach to interaction design (1st ed.). London: Wiley.Google Scholar
  5. Brignull, H., Rogers, Y. (2003). Enticing people to interact with large public displays in public spaces. In Proceedings of INTERACT ’03.Google Scholar
  6. Buxton, W. (1995). Integrating the periphery and context: A new taxonomy of telematics. In Proceedings of Graphics Interface ’95 (pp. 239–246). Citeseer.Google Scholar
  7. Chang, B.-W., & Ungar, D. (1993). Animation: From cartoons to the user interface. In Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology (pp. 45–55). New York, NY, USA: ACM.Google Scholar
  8. Dragicevic, P., Bezerianos, A., Javed, W., et al. (2011). Temporal distortion for animated transitions. In Proceedings of CHI ’11 (pp. 2009–2018). New York, NY, USA: ACM.Google Scholar
  9. Gellersen, H., Fischer, C., Guinard, D., et al. (2009). Supporting device discovery and spontaneous interaction with spatial references. Personal and Ubiquitous Computing, 13, 255–264. doi: 10.1007/s00779-008-0206-3 CrossRefGoogle Scholar
  10. Greenberg, S., Boring, S., Vermeulen, J., & Dostal, J. (2014). Dark patterns in proxemic interactions: a critical perspective. In Proceedings of DIS ’14. New York, NY, USA: ACM.Google Scholar
  11. Greenberg, S., Marquardt, N., Ballendat, T., et al. (2011). Proxemic interactions: The new ubicomp? Interactions, 18, 42–50. doi: 10.1145/1897239.1897250 CrossRefGoogle Scholar
  12. Hall, E. T. (1963). A system for the notation of proxemic behavior. American Anthropologist, 65, 1003–1026.CrossRefGoogle Scholar
  13. Hall, E. T. (1966). The hidden dimension (1st ed.). Garden City, NY: Doubleday.Google Scholar
  14. Hausen, D. (2014). Peripheral interaction—exploring the design space. PhD Thesis, University of Munich.Google Scholar
  15. Hinckley, K. (2003). Synchronous gestures for multiple persons and computers. In Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology (pp 149–158). New York, NY, USA: ACM.Google Scholar
  16. Hinckley, K., Ramos, G., Guimbretiere, F., et al. (2004). Stitching: Pen gestures that span multiple displays. In Proceedings of the Working Conference on Advanced Visual Interfaces (pp. 23–31). New York, NY, USA: ACM.Google Scholar
  17. Huang, E. M., Koster, A., & Borchers, J. (2008). Overcoming assumptions and uncovering practices: When does the public really look at public displays? In Proceedings of the 6th International Conference on Pervasive Computing (pp. 228–243). Berlin, Heidelberg: Springer.Google Scholar
  18. Ju, W., Lee, B. A., & Klemmer, S. R. (2008). Range: Exploring implicit interaction through electronic whiteboard design. In Proceedings of CSCW ’08 (pp. 17–26). ACM.Google Scholar
  19. Jurmu, M., Ogawa, M., Boring, S., et al. (2013). Waving to a touch interface: Descriptive field study of a multipurpose multimodal public display. In Proceedings of PerDis ’13 (pp. 7–12). New York, NY, USA: ACM.Google Scholar
  20. Kray, C., Rohs, M., Hook, J., & Kratz, S. (2008). Group coordination and negotiation through spatial proximity regions around mobile devices on augmented tabletops. In 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems, 2008. TABLETOP 2008 (pp. 1–8).Google Scholar
  21. Marquardt, N., Ballendat, T., Boring, S., et al. (2012). Gradual engagement: Facilitating information exchange between digital devices as a function of proximity. In Proceedings of ITS ’12 (pp. 31–40). New York, NY, USA: ACM.Google Scholar
  22. Marquardt, N., Diaz-Marino, R., Boring, S., & Greenberg, S. (2011). The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In Proceedings of UIST ’11 (pp. 315–326). New York, NY, USA: ACM.Google Scholar
  23. Marquardt, N., & Greenberg, S. (2015). Proxemic interactions: From theory to practice. San Rafael: Morgan & Claypool Publishers.Google Scholar
  24. Müller, J., Alt, F., Michelis, D., & Schmidt, A. (2010). Requirements and design space for interactive public displays. In Proceedings of MM ’10 (pp. 1285–1294). New York, NY, USA: ACM.Google Scholar
  25. Müller, J., Exeler, J., Buzeck, M., & Krüger, A. (2009a). Reflective signs: Digital signs that adapt to audience attention. Proceedings of the 7th International Conference on Pervasive Computing (pp. 17–24). Berlin, Heidelberg: Springer.Google Scholar
  26. Müller, J., Walter, R., Bailly, G., et al. (2012). Looking glass: A field study on noticing interactivity of a shop window. In Proceedings of CHI ’12 (pp. 297–306). New York, NY, USA: ACM.Google Scholar
  27. Müller, J., Wilmsmann, D., Exeler, J., et al. (2009b). Display blindness: The effect of expectations on attention towards digital signage. In Proceedings of Pervasive ’09 (pp. 1–8). Berlin, Heidelberg: Springer.Google Scholar
  28. Norman, D. A. (2013). The design of everyday things. New York, NY: Basic Books.Google Scholar
  29. Ojala, T., Kostakos, V., Kukka, H., et al. (2012). Multipurpose interactive public displays in the wild: Three years later. Computer, 45, 42–49. doi: 10.1109/MC.2012.115 CrossRefGoogle Scholar
  30. Prante, T., Röcker, C., Streitz, N., et al. (2003). Hello. Wall–beyond ambient displays. In Adjunct Proceedings of Ubicomp (pp. 277–278). Citeseer.Google Scholar
  31. Rogers, Y., Hazlewood, W. R., Marshall, P., et al. (2010). Ambient influence: Can twinkly lights lure and abstract representations trigger behavioral change? In Proceedings of Ubicomp ’10 (pp. 261–270). New York, NY, USA: ACM.Google Scholar
  32. Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. In Proceedings of WMCSA ’94 (pp. 85–90). Washington, DC, USA: IEEE Computer Society.Google Scholar
  33. Tidwell, J. (2005). Designing interfaces: Patterns for effective interaction design (1st ed.) Sebastopol: O’Reilly Media.Google Scholar
  34. Vermeulen, J., Luyten, K., Coninx, K., et al. (2015). Proxemic flow: Dynamic peripheral floor visualizations for revealing and mediating large surface interactions. In Proceedings of INTERACT 2015.Google Scholar
  35. Vermeulen, J., Luyten, K., Coninx, K., & Marquardt, N. (2014). The design of slow-motion feedback. In Proceedings of DIS ’14 (pp. 267–270). New York, NY, USA: ACM.Google Scholar
  36. Vermeulen, J., Slenders, J., Luyten, K., & Coninx, K. (2009). I bet you look good on the wall: Making the invisible computer visible. In Proceedings of the European Conference on Ambient Intelligence (pp. 196–205). Berlin, Heidelberg: Springer.Google Scholar
  37. Vogel, D., & Balakrishnan, R. (2004). Interactive public ambient displays: Transitioning from implicit to explicit, public to personal, interaction with multiple users. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology (pp. 137–146). New York, NY, USA: ACM.Google Scholar
  38. Weiser, M. (1991). The computer for the 21st century. Scientific American, 265, 66–75.CrossRefGoogle Scholar
  39. Weiser, M., & Brown, J. S. (1996). Designing calm technology. PowerGrid Journal, 1, 75–85.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  2. 2.HCI CentreUniversity of BirminghamBirminghamUK
  3. 3.UCL Interaction Centre/ICRI CitiesUniversity College LondonLondonUK

Personalised recommendations