International Workshop on Combinatorial Algorithms

Combinatorial Algorithms pp 100-111 | Cite as

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

  • Konrad K. Dabrowski
  • François Dross
  • Matthew Johnson
  • Daniël Paulusma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9538)


We consider a natural restriction of the List Colouring problem, k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree.


List colouring Choosability Planar graphs Maximum degree 


  1. 1.
    Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Appel, K., Haken, W.: Every planar map is four colorable, Contemporary Mathematics 89, AMS Bookstore (1989)Google Scholar
  3. 3.
    Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37, 194–197 (1941)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, M., Montassier, M., Raspaud, A.: Some structural properties of planar graphs and their applications to 3-choosability. Discrete Math. 312, 362–373 (2012)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chlebík, M., Chlebíková, J.: Hard coloring problems in low degree planar bipartite graphs. Discrete Appl. Math. 154, 1960–1965 (2006)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Chudnovsky, M.: Coloring graphs with forbidden induced subgraphs. Proc. ICM IV, 291–302 (2014)Google Scholar
  7. 7.
    Dvořák, Z., Lidický, B., Škrekovski, R.: Planar graphs without 3-, 7-, and 8-cycles are 3-choosable. Discrete Math. 309, 5899–5904 (2009)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput. 7, 375–386 (1998)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, pp. 125–157. Winnipeg, Man., Utilitas Math. (1980)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified \({\sf NP}\)-complete graph problems. In: Proceedings of STOC, pp. 47–63 (1974)Google Scholar
  11. 11.
    Golovach, P.A., Heggernes, P., van ’t Hof, P., Paulusma, D.: Choosability on \(H\)-free graphs. Inform. Process. Lett. 113, 107–110 (2013)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs, Manuscript, arXiv:1407.1482v4 (2014)
  13. 13.
    Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159, 119–130 (1996)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Kratochvíl, J.: Precoloring extension with fixed color bound. Acta Mathematica Universitatis Comenianae 62, 139–153 (1993)MathSciNetMATHGoogle Scholar
  15. 15.
    Kratochvíl, J., Tuza, Z.: Algorithmic complexity of list colourings. Discrete Appl. Math. 50, 297–302 (1994)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Lam, P.C.B., Xu, B., Liu, J.: The 4-choosability of plane graphs without 4-cycles. J. Comb. Theory Ser. B 76, 117–126 (1999)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Molloy, M., Reed, B.: Colouring graphs when the number of colours is almost the maximum degree. J. Comb. Theory Ser. B 109, 134–195 (2014)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Montassier, M.: A note on the not 3-choosability of some families of planar graphs. Inform. Process. Lett. 99, 68–71 (2006)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Montassier, M., Raspaud, A., Wang, W.: Bordeaux 3-color conjecture and 3-choosability. Discrete Math. 306, 573–579 (2006)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Thomassen, C.: Every planar graph is \(5\)-choosable. J. Comb. Theory Ser. B 62, 180–181 (1994)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Thomassen, C.: 3-List-coloring planar graphs of girth 5. J. Comb. Theory Ser. B 64, 101–107 (1995)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. In: Diskret. Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem, vol. 101, pp. 3–10 (1976)Google Scholar
  23. 23.
    Vizing, V.G.: Vertex colorings with given colors. Diskret. Analiz. 29, 3–10 (1976)MathSciNetMATHGoogle Scholar
  24. 24.
    Voigt, M.: List colourings of planar graphs. Discrete Math. 120, 215–219 (1993)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Voigt, M.: A not 3-choosable planar graph without 3-cycles. Discrete Math. 146, 325–328 (1995)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Voigt, M.: A non-3-choosable planar graph without cycles of length 4 and 5. Discrete Math. 307, 1013–1015 (2007)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Wang, Y., Lu, H., Chen, M.: Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable. Discrete Math. 310, 147–158 (2010)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Wang, Y., Lu, H., Chen, M.: Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable. Discrete Appl. Math. 159, 232–239 (2011)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Wang, D.-Q., Wen, Y.-P., Wang, K.-L.: A smaller planar graph without 4-, 5-cycles and intersecting triangles that is not 3-choosable. Inform. Process. Lett. 108, 87–89 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konrad K. Dabrowski
    • 1
  • François Dross
    • 2
    • 3
  • Matthew Johnson
    • 1
  • Daniël Paulusma
    • 1
  1. 1.School of Engineering and Computing SciencesDurham UniversityDurhamUK
  2. 2.Ecole Normale Supérieure de LyonLyonFrance
  3. 3.Laboratoire d’Informatique, de Robotique et de Microélectronique de MontpellierMontpellierFrance

Personalised recommendations