Skip to main content

Abstract

The methods of cellular and molecular biology represent useful and attractive tools that have been applied in identification, taxonomy and systematics of broad spectrum of parasitic organisms over the past decades. The pilot molecular data on Fascioloides magna appeared in 90s of the 20th century. After more than 20 years of molecular and cellular research of F. magna, effective markers for accurate species identification and large-scale population studies, detailed subcellular structure of the parasite, and immunologically active molecules, were detected. This chapter is divided into four sections. First one is dealing with general structure and characterization of ribosomal genes and their utilization in molecular taxonomy and phylogeny of F. magna. Second part is focused on characterization and structure of mitochondrial genes and their application in studies on genetic interrelationships, biogeography, origin and transmission routes of F. magna. Microsatellites, biparentally inherited multilocus markers, are useful population genetics markers described in third subchapter. Data on ultrastructure, karyotype and chromosomal location of ribosomal genes of F. magna are presented in the last part of this chapter. In addition, we provided brief overview on current knowledge of F. magna isoenzyme analyses, excretory/secretory proteins, humoral immune responses during experimental infection with F. magna in selected final hosts, and up to date technologies of transcriptome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard RD, Barker SC, Blair D, Cribb TH (1993) Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). Int J Parasitol 23:423–425. doi:10.1016/0020-7519(93)90022-Q

    Article  CAS  PubMed  Google Scholar 

  • Andrés JA, Bogdanowicz SM (2011) Isolating microsatellite loci: looking back, looking ahead. In: Orgogozo V, Rockman MV (eds) Molecular methods for evolutionary genetics. Humana Press, New York

    Google Scholar 

  • Andrews RH, Chilton NB (1999) Multilocus enzyme electrophoresis: a valuable technique for providing answers to problems in parasite systematics. Int J Parasitol 29:213–253. doi:10.1016/S0020-7519(98)00168-4

    Article  CAS  PubMed  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. N Biotechnol 25:193–205. doi:10.1016/j.nbt.2008.12.009

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution, 2nd edn. Chapman & Hall, New York

    Book  Google Scholar 

  • Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proc Nat Acad Sci USA 96:992–995. doi:10.1073/pnas.96.3.992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165. doi:10.1046/j.0962-1083.2001.01436.x

    Article  PubMed  Google Scholar 

  • Bazsalovicsová E, Králová-Hromadová I, Špakulová M, Reblánová M, Oberhauserová K (2010) Determination of ribosomal internal transcribed spacer 2 (ITS2) interspecific markers in Fasciola hepatica, Fascioloides magna, Dicrocoelium dendriticum and Paramphistomum cervi (Trematoda), parasites of wild and domestic ruminants. Helminthologia 47:76–82. doi:10.2478/s11687-010-0011-1

    Article  Google Scholar 

  • Bazsalovicsová E, Králová-Hromadová I, Radvánszky J, Beck R (2013) The origin of the giant liver fluke, Fascioloides magna (Trematoda: Fasciolidae) from Croatia determined by high-resolution melting screening of mitochondrial cox1 haplotypes. Parasitol Res 112:2661–2666. doi:10.1007/s00436-013-3433-0

    Article  PubMed  Google Scholar 

  • Bazsalovicsová E, Králová-Hromadová I, Štefka J, Minárik G, Bokorová S, Pybus M (2015) Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna. Parasit Vectors 8:288. doi:10.1186/s13071-015-0895-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS (2003) The LightTyper: high throughput genotyping using fluorescent melting curve analysis. BioTechniques 34:1288–1295

    CAS  PubMed  Google Scholar 

  • Bildfell RJ, Whipps CM, Gillin CM, Kent ML (2007) DNA-based identification of a hepatic trematode in an elk calf. J Wildl Dis 43:762–769. doi:10.7589/0090-3558-43.4.762

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Ann Rev Genet 35:125–148. doi:10.1146/annurev.genet.35.102401.090231

    Article  CAS  PubMed  Google Scholar 

  • Bombarová M, Marec F, Nguyen P, Špakulová M (2007) Divergent location of ribosomal genes in chromosomes of fish thornyheaded worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica 131:141–149. doi:10.1007/s10709-006-9124-3

    Article  PubMed  Google Scholar 

  • Bombarová M, Vítková M, Špakulová M, Koubková B (2009) Telomere analysis of platyhelminths and acanthocephalans by FISH and Southern hybridization. Genome 52:897–903. doi:10.1139/g09-063

    Article  PubMed  Google Scholar 

  • Bombarová M, Špakulová M, Koubková B (2014) New data on the karyotype and chromosomal rDNA location in Paradiplozoon megan (Monogenea, Diplozoidae), gill parasite of chubs. Parasitol Res 113:4111–4116. doi:10.1007/s00436-014-4082-7

    Article  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleid Acid Res 27:1767–1780. doi:10.1093/nar/27.8.1767

    Article  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends in Genet 19:709–716. doi:10.1016/j.tig.2003.10.012

    Article  CAS  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050. doi:10.1002/bies.20470

    Article  CAS  PubMed  Google Scholar 

  • Cantacessi C, Mulvenna J, Young ND, Kašný M, Horák P, Aziz A, Hofmann A, Loukas A, Gasser RB (2012) A deep exploration of the transcriptome and excretory/secretory proteome of adult Fascioloides magna. Mol Cell Proteomics 11:1340–1353. doi:10.1074/mcp.M112.019844

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins FH, Paskewitz SM (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5:1–9

    Article  CAS  PubMed  Google Scholar 

  • Crimi M, Rigolio R (2008) The mitochondrial genome, a growing interest inside an organelle. Int J Nanomed 3:51–57. doi:10.2147/ijn.s2482

    CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251. doi:10.1101/gr.1416703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484. doi:10.1080/10635150490445698

    Article  PubMed  Google Scholar 

  • Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 772:157–178. doi:10.1007/978-1-61779-228-1_9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feagin JE (2000) Mitochondrial genome diversity in parasites. Int J Parasitol 30:371–390. doi:10.1016/S0020-7519(99)00190-3

    Article  CAS  PubMed  Google Scholar 

  • Flegr J (2009) Evoluční biologie, 2nd edn. Academia, Praha (in Czech)

    Google Scholar 

  • Gibbons JG, Branco AT, Yu S, Lemos B (2014) Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun 5:4850. doi:10.1038/ncomms5850

    Article  CAS  PubMed  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Res 11:591–611. doi:10.1111/j.1755-0998.2011.03014.x

    Article  CAS  Google Scholar 

  • Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labelled primers: a closed tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406. doi:10.1373/49.3.396

    Article  CAS  PubMed  Google Scholar 

  • Halton DW (2004) Microscopy and the helminth parasite. Micron 35:361–390. doi:10.1016/j.micron.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Freifelder D, Snyder LA (1988) Basic genetics. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • He R, Kim MJ, Nelson W, Balbuena TS, Kim R, Kramer R, Crow JA, May GD, Thelen JJ, Soderlund CA, Gang DR (2012) Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity. Am J Bot 99:232–247. doi:10.3732/ajb.1100429

    Article  CAS  PubMed  Google Scholar 

  • Hearne CM, Ghosh S, Todd JA (1992) Microsatellites for linkage analysis of genetic traits. Trends Genet 8:288–294. doi:10.1016/0168-9525(92)90256-4

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Davis SK (1986) Evolution of ribosomal DNA: fifty million years of recorded history in the frog genus Rana. Evolution 40:1275–1288. doi:10.2307/2408953

    Article  CAS  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Article  CAS  PubMed  Google Scholar 

  • Hörweg C, Prosl H, Wille-Piazzai W, Joachim A, Sattmann H (2011) Prevalence of Fascioloides magna in Galba truncatula in the Danube backwater area east of Vienna, Austria. Wien Tierärztl Mschr 98:261–267

    Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2004) The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress and implications for population genetics and systematics. Adv Parasitol 56:133–212. doi:10.1016/S0065-308X(03)56003-1

    Article  PubMed  Google Scholar 

  • Josko D (2012) Updates in immunoassays: parasitology. Clin Lab Sci 25:185–190

    PubMed  Google Scholar 

  • Karamon J, Larska M, Jasik A, Sell B (2015) First report of the giant liver fluke (Fascioloides magna) infection in farmed fallow deer (Dama dama) in Poland—pathomorphological changes and molecular identification. Bull Vet Inst Pulawy 59:339–344. doi:10.1515/bvip-2015-0050

    Google Scholar 

  • Kobayashi T (2011) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68:1395–1403. doi:10.1007/s00018-010-0613-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková L, Novobilský A, Beck R, Koudela B, Marinculić A, Rajský D, Pybus M (2008) Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol 94:58–67. doi:10.1645/GE-1324.1

    Article  PubMed  Google Scholar 

  • Králová-Hromadová I, Bazsalovicsová E, Štefka J, Špakulová M, Vávrová S, Szemes T, Tkach V, Trudgett A, Pybus M (2011) Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int J Parasitol 41:373–383. doi:10.1016/j.ijpara.2010.10.010

    Article  PubMed  Google Scholar 

  • Králová-Hromadová I, Bazsalovicsová E, Demiaszkiewicz AW (2015) Molecular characterization of Fascioloides magna (Trematoda: Fasciolidae) from south-western Poland based on mitochondrial markers. Acta Parasitol 60:544–547. doi:10.1515/ap-2015-0077

    Article  PubMed  Google Scholar 

  • Le TH, Blair D, McManus DP (2000) Mitochondrial genomes of human helminths and their use as markers in population genetics and phylogeny. Acta Tropi 77:243–256. doi:10.1016/S0001-706X(00)00157-1

    Article  CAS  Google Scholar 

  • Le TH, Blair D, McManus DP (2001) Complete DNA sequence and gene organization of the mitochondrial genome of the liver fluke, Fasciola hepatica L. (Platyhelminthes; Trematoda). Parasitology 123:609–621

    Article  CAS  PubMed  Google Scholar 

  • Lotfy WM, Brant SV, DeJong RJ, Le TH, Demiaszkiewicz A, Rajapakse RP, Perera VB, Laursen JR, Loker ES (2008) Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae). Am J Trop Med Hygeine 79:248–255

    CAS  Google Scholar 

  • Lydeard C, Mulvey M, Aho JM (1989) Genetic variability among natural populations of the liver fluke Fascioloides magna in white-tailed deer, Odocoileus virginianus. Can J Zool 67:2021–2025. doi:10.1139/z89-287

    Article  Google Scholar 

  • Minárik G, Bazsalovicsová E, Zvijáková Ľ, Štefka J, Pálková L, Králová-Hromadová I (2014) Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next generation sequencing. Mol Biochem Parasit 195:30–33. doi:10.1016/j.molbiopara.2014.06.003

    Article  Google Scholar 

  • Morgan EA (1982) Ribosomal RNA genes in Escherischia coli. In: Busch H, Rothblum L (eds) The cell nucleus: rDNA. Academic Press, New York

    Google Scholar 

  • Mulvey M, Aho JM, Lydeard C, Leberg PL, Smith MH (1991) Comparative population genetic structure of a parasite (Fascioloides magna) and its definitive host. Evolution 45:1628–1640. doi:10.2307/2409784

    Article  Google Scholar 

  • Nadler SA, De Leon GPP (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709. doi:10.1017/S003118201000168X

    Article  CAS  PubMed  Google Scholar 

  • Nadler SA, Lindquist RL, Near TJ (1995) Genetic structure of Midwestern Ascaris suum populations: a comparison of isoenzyme and RAPD markers. J Parasitol 81:385–394

    Article  CAS  PubMed  Google Scholar 

  • Naem S, Budke CM, Craig TM (2012) Morphological characterization of adult Fascioloides magna (Trematoda: Fasciolidae): first SEM report. Parasitol Res 2:971–978. doi:10.1007/s00436-011-2582-2

    Article  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Ann Rev Genet 39:121–152. doi:10.1146/annurev.genet.39.073003.112240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354. doi:10.1007/s10709-009-9424-5

    Google Scholar 

  • Noller HF (1991) Ribosomal RNA and translation. Ann Rev Biochem 60:191–227. doi:10.1146/annurev.bi.60.070191.001203

    Article  CAS  PubMed  Google Scholar 

  • Novobilský A, Kašný M, Mikeš L, Kovařčík K, Koudela B (2007) Humoral immune responses during experimental infection with Fascioloides magna and Fasciola hepatica in goats. Parasitol Res 101:357–364. doi:10.1007/s00436-007-0463-5

    Article  PubMed  Google Scholar 

  • Nunome T, Negoro S, Miyatake K, Hirotaka Y, Fukuoka H (2006) A protocol for construction of microsatellite enriched genomic library. Plant Mol Biol Rep 24:305–312. doi:10.1007/BF02913457

    Article  CAS  Google Scholar 

  • Oberhauserová K, Bazsalovicsová E, Králová-Hromadová I, Major P, Reblánová M (2010) Molecular discrimination of eggs of cervid trematodes using the Teflon (PTFE) technique for eggshell disruption. Helminthologia 47:147–151. doi:10.2478/s11687-010-0022-y

    Article  Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prokopowich CD, Gregory TR, Crease TJ, Gregory TR, Crease TJ, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50. doi:10.1139/g02-103

    Article  CAS  PubMed  Google Scholar 

  • Pyziel AM, Demiaszkiewicz AW, Kuligowska I (2014) Molecular identification of Fascioloides magna (Bassi, 1875) from red deer from South-Western Poland (Lower Silesian wilderness) on the basis of internal transcribed spacer 2 (ITS-2). Pol J Vet Sci 17:523–525. doi:10.2478/pjvs-2014-0077

    CAS  PubMed  Google Scholar 

  • Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288. doi:10.1016/0169-5347(93)90256-O

    Article  CAS  PubMed  Google Scholar 

  • Radvánský J, Bazsalovicsová E, Králová-Hromadová I, Minárik G, Kádaši L (2011) Development of high-resolution melting (HRM) analysis for population studies of Fascioloides magna (Trematoda: Fasciolidae), the giant liver fluke of ruminants. Parasitol Res 108:201–209. doi:10.1007/s00436-010-2057-x

    Article  PubMed  Google Scholar 

  • Reblánová M, Špakulová M, Orosová M, Bazsalovicsová E, Rajský D (2010) A description of karyotype of the giant liver fluke Fascioloides magna (Trematoda, Platyhelminthes) and review of Fasciolidae cytogenetics. Helminthologia 47:69–75. doi:10.2478/s11687-010-0012-0

    Article  Google Scholar 

  • Reblánová M, Špakulová M, Orosová M, Králová-Hromadová I, Bazsalovicsová E, Rajský D (2011) A comparative study of karyotypes and chromosomal location of rDNA genes in important liver flukes Fasciola hepatica and Fascioloides magna (Trematoda: Fasciolidae). Parasitol Res 109:1021–1028. doi:10.1007/s00436-011-2339-y

    Article  PubMed  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160. doi:10.1006/abio.1996.9916

    Article  CAS  PubMed  Google Scholar 

  • Sattmann H, Hörweg C, Gaub L, Feix AS, Haider M, Walochnik J, Rabitsch W, Prosl H (2014) Wherefrom and whereabouts of an alien: the American liver fluke Fascioloides magna in Austria: an overview. Wiener Klinische Wochenschrift 126:23–31. doi:10.1007/s00508-014-0499-3

    Article  PubMed Central  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion. Nat Rev Genet 5:63–69. doi:10.1038/nrg1249

    Article  PubMed  Google Scholar 

  • Simon C, Pääbo S, Kocher TD, Wilson AC (1990) Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In: Cleeg M, O’Brien S (eds) Molecular evolution. UCLA Symposia on molecular and cellular Biology, new series. Liss, New York

    Google Scholar 

  • Tighe PJ, Ryder RR, Todd I, Fairclough LC (2015) ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl 9:406–422. doi:10.1002/prca.201400130

    Article  CAS  PubMed  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860. doi:10.1373/49.6.853

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ma H (2009) Western blotting and ELISA techniques. Researcher 1:67–86

    Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Stretegies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chang QC, Zhang Y, Tian SQ, Lou Y, Duan H, Guo DH, Wang CR, Xing-Quan Zhu XQ (2014) Characterization of the complete nuclear ribosomal DNA sequences of Paramphistomum cervi. Sci World J Article ID 751907. doi:10.1155/2014/751907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Králová-Hromadová .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Králová-Hromadová, I., Juhásová, L., Bazsalovicsová, E. (2016). Modern Approaches in Fascioloides magna Studies. In: The Giant Liver Fluke, Fascioloides magna: Past, Present and Future Research. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-29508-4_5

Download citation

Publish with us

Policies and ethics