Chaos PSO with Super-Sized Swarm—Initial Study

  • Michal PluhacekEmail author
  • Roman Senkerik
  • Ivan Zelinka
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 427)


In this paper it is investigated the possibility of improving the performance of PSO algorithm with super-sized population. The performance fo canonical PSO with super-sized swarm has been investigated previously and showed promising results. In this study four different chaotic systems are used as pseudo-random number generators for the PSO algorithm. The IEEE CEC’13 benchmark set is used to evaluate the performance of the method.


Particle swarm optimization Chaos PSO Evolutionary algorithm Optimization 



This work was supported by Grant Agency of the Czech Republic—GACR P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, partially supported by Grant of SGS No. SP2015/142 of VSB-Technical University of Ostrava, Czech Republic and by Internal Grant Agency of Tomas Bata University under the projects No. IGA/FAI/2015/057.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, 1995, pp. 1942-1948Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
  3. 3.
    Liang, J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer. In: Swarm Intelligence Symposium, SIS 2005, pp. 124–129 (2005)Google Scholar
  4. 4.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  5. 5.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhi-Hui, Z., Jun, Z., Yun, L., Yu-hui, S.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2011)CrossRefGoogle Scholar
  7. 7.
    Yuhui, S., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, pp. 69–73, 4–9 May 1998Google Scholar
  8. 8.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC ‘02, pp. 1671–1676 (2002)Google Scholar
  9. 9.
    van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pluhacek, M., Senkerik, R., Zelinka, I.: The initial study on the potential of super-sized swarm in PSO. Adv. Intell. Syst. Comput. Mendel 378(2015), 127–135 (2015)CrossRefGoogle Scholar
  11. 11.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
  12. 12.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)Google Scholar
  13. 13.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft. Comput. 18(4), 631–639 (2014). doi: 10.1007/s00500-014-1222-z CrossRefGoogle Scholar
  14. 14.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova Z., Zelinka I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 66, 122–134 (2013)Google Scholar
  15. 15.
    Liang J. J., Qu B-Y., Suganthan P.N., Hernández-Díaz Alfredo G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Jan 2013Google Scholar
  16. 16.
    Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous pso for real-parameter optimization. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 361–368 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlínCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations