Skip to main content

Prediction of NOX Concentration Time Series Using the Chaos Theory

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 427))

Abstract

This paper is aimed at analysis of NOx concentration time series. At first we estimated the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction. Subsequently we computed the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we estimated the correlation dimension and Kolmogorov entropy. The results indicated that chaotic behaviors obviously exist in NOx concentration time series. Finally we computed predictions using a radial basis function and polynomials to fit global nonlinear functions to the data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vallero, D.A.: Fundamentals of Air Pollution, 4th edn. Academic Press, Amsterdam and Boston (2007)

    Google Scholar 

  2. Baťa, R., Půlkrábková, P.: The importance of modelling the environmental impacts of a biomass based electric power generation for public safety. WSEAS Trans. Environ. Dev. 9(4) (2013)

    Google Scholar 

  3. World Health Organization: Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, p. 48. 13–15 2003. Accessed 19 Nov 2011

    Google Scholar 

  4. Baťa, R., Kadlecová, P.: Modeling of economic and environmental impacts of energy generation using of waste paper. E + M Ekonomie a Management 2 (2011)

    Google Scholar 

  5. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data, 272 pp. Springer, New York (1996)

    Google Scholar 

  6. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, 304 pp. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Miksovsky, J., Raidl, A.: Testing the performance of three nonlinear methods of time series analysis for prediction and downscaling of European daily temperatures. Nonlinear Process. Geophys. 12(6), 979–991 (2005)

    Article  Google Scholar 

  8. Chelani, A.B., Singh, R.N., Devotta, S.: Nonlinear dynamical characterization and prediction of ambient nitrogen dioxide concentration. Water, Air Soil Pollut. 166(1–4), 121–138 (2005)

    Google Scholar 

  9. Zhou, H., Cen, K., Fan, J.: Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks. Energy 29(1), 167–183 (2004)

    Article  Google Scholar 

  10. Hájek, P., Olej, V.: Air quality modelling by Kohonen’s self-organizing feature maps and LVQ neural networks. WSEAS Trans. environment and Dev. 4(1), 45–55 (2008)

    Google Scholar 

  11. Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35(5), 815–825 (2001)

    Article  Google Scholar 

  12. Baťa, R.: Modeling of LCA-chain segment for Biofuels as an instrument for the protection of the population. WSEAS Trans. Environ. Dev. 9(2) (2013)

    Google Scholar 

  13. Hájek, P., Olej, V.: Air quality indices and their modelling by hierarchical fuzzy inference systems. WSEAS Trans. Environ. Dev. 10, 661–672 (2009)

    Google Scholar 

  14. Kříž, R.: Chaos in nitrogen dioxide concentration time series and its prediction. In: Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems Advances in Intelligent Systems and Computing, vol. 289, pp 365–376 (2014)

    Google Scholar 

  15. Peng, H., Ozaki, T., Haggan-Ozaki, V., Toyoda, Y.: A parameter optimization method for radial basis function type models. IEEE Trans. Neural Netw. 14(2), 432–438 (2003)

    Article  MATH  Google Scholar 

  16. Huszar, P., et al.: Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmos. Chem. Phys. 10(14), 6645–6660 (2010)

    Article  Google Scholar 

  17. Abarbanel, H.D., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331 (1993)

    Google Scholar 

  18. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  19. Kříž, R.: Chaotic Analysis of the GDP Time Series. In: Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, pp. 353–362. Springer (2013)

    Google Scholar 

  20. Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. Eur. J. Phys. 26(1), 205 (2005)

    Google Scholar 

  21. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Google Scholar 

  22. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)

    Google Scholar 

  23. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65(1), 117–134 (1993)

    Google Scholar 

  24. Raidl, A.: Estimating the fractal dimension, K2-entropy, and the predictability of the atmosphere. Cz. J. Phys. 46(4), 293–328 (1996)

    Article  MathSciNet  Google Scholar 

  25. Kříž, R., Kratochvíl, Š.: Analyses of the Chaotic behavior of the electricity price series. In: ISCS 2013: Interdisciplinary Symposium on Complex Systems, p. 215–226. Springer, Berlin (2014)

    Google Scholar 

  26. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308(1), 1–64 (1999)

    Article  MathSciNet  Google Scholar 

  28. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9(2), 413–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cohen, A., Procaccia, I.: Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A 31, 1872 (1985)

    Article  Google Scholar 

  30. Farmer, D.J.: Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 85–848 (1987)

    Google Scholar 

Download references

Acknowledgments

This work was supported by SGS 40520/20SG/450009 UPCE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radko Kříž .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kříž, R., Lešáková, P. (2016). Prediction of NOX Concentration Time Series Using the Chaos Theory. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. Advances in Intelligent Systems and Computing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-29504-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29504-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29503-9

  • Online ISBN: 978-3-319-29504-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics