Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 909 Accesses

Abstract

This chapter discusses prominent examples of global material cycles. This is of major significance in order to understand potential perturbations of the natural material cycles caused by man’s production or use of energy. As selected examples, carbon, water, nitrogen, and oxygen cycles will be treated, and in addition aspects of some other material cycles (sulfur, phosphorus, chlorine) as well as interactions of these cycles. The Earth as a closed system is represented by a selection of several open (sub-)systems which exchange material and energy by various processes. Human activities, in many cases, have already had a strong impact on the natural material cycles, often with deleterious impact on ecosystems. In particular the global carbon system with its relatively small natural atmospheric reservoir is under severe threat through anthropogenic carbon dioxide emissions. It is evident that there is a strong incentive to decouple future energy supply from fossil organic material combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bolin B (1970) The Carbon Cycle. Sci Amer 223:124–132

    Google Scholar 

  • Brimblecombe P (2005) The Global Sulfur Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 362:655–661

    Google Scholar 

  • Dong HD, Mégie G, Hauglustaine D (2003) A pro-active stratospheric ozone protection scenario. Global Environ Chang 13:43–49

    Google Scholar 

  • Farman J, Gardiner B, Shanklin J (1985) Large losses of total ozone in Antarctica reveal seasonal ClO\(_x\)/NO\(_x\) interaction. Nature 315:207–210

    Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive Nitrogen and The World: 200 Years of Change. Ambio 31:64–71

    Google Scholar 

  • Galloway JN (2005) The Global Nitrogen Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Garrels RM, Lerman A (1981) Phanerozoic cycles of sedimentary carbon and sulfur. Proc Natl Acad Sci USA 78:4652–4656

    Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 416:716–718

    Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1698

    Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Google Scholar 

  • Hupfer P, Kuttler W (eds) (2005) Witterung und Klima. Eine Einführung in die Meteorologie und Klimatologie. B.G. Teubner Verlag, Stuttgart

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Chapter 7 – Couplings Between Changes in the Climate System and Biogeochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2013a) Climate Change 2013 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. http://www.ipcc.ch/report/ar5. Cited 16 Mar 2015

  • IPCC Intergovernmental Panel on Climate Change (2013b) Climate Change 2013 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Chapter 6 – Carbon and Other Biogeochemical Cycles. http://www.ipcc.ch/report/ar5. Cited 16 Mar 2015

  • Jacobson MF, Charlson RJ, Rodhe H, Orians G (eds) (2000) Earth System Science. From Biogeochemical Cycles to Global Changes. Elsevier Academic Press, London

    Google Scholar 

  • Keeling RF, Najjar RP, Bender ML, Tans PP (1993) What Atmospheric Oxygen Measurements Can Tell Us About the Global Carbon Cycle. Global Biogeochem Cy 7:37–67

    Google Scholar 

  • Lange M, Eisenhauer N, Sierra C, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik A, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Comm 6:6707

    Google Scholar 

  • Larcher W (2003) Physiological Plant Ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Moussallem I, Jörissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194

    Google Scholar 

  • O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chloralkali technology. Springer, New York

    Google Scholar 

  • Öberg G (2002) The natural chlorine cycle – fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581

    Google Scholar 

  • Petsch ST (2005) The Global Oxygen Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Pinnekamp P, Baumann P, Cornel P, Everding W, Göttlicher-Schmidle U, Heinzmann B, Jardin N, Londong J, Meyer C, Mocker M, Montag D, Müller-Schaper J, Petzet S, Schaum C (2013) Stand und Perspektiven der Phosphorrückgewinnung aus Abwasser und Klärschlamm. Korrespondenz Abwasser, Abfall 60:1–12

    Google Scholar 

  • Rowland MJ, Molina FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 239:810–812

    Google Scholar 

  • Ruttenberg KC (2005) The Global Phosphorus Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Google Scholar 

  • Schönwiese CD (2008) Klimatologie. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Schultz J (2000) Handbuch der Ökozonen. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Google Scholar 

  • Smil V (2001) Enriching the Earth. MIT Press, Cambridge

    Google Scholar 

  • Tabazadeh A, Cordero EC (2004) New Directions: Stratospheric ozone recovery in a changing atmosphere. Atmos Environ 38:647–649

    Google Scholar 

  • Tavares FV, Monteiro LPC, Mainier FB (2013) Indicators of energy efficiency in ammonia productions plants. Amer J Energ Res 2:116–123

    Google Scholar 

  • U.S. Geological Survey (2014) Nitrogen (fixed)–ammonia statistics. In: Kelly TD, Matos GR (comps) Historical statistics for mineral and material commodities in the United States, U.S. Geological Survey Data Series 140. http://minerals.usgs.gov/minerals/pubs/historical-statistics/. Cited 13 Dec 2015

  • van Krevelen DW (1961) Coal: Typology, Chemistry, Physics, Constitution. Elsevier, Amsterdam

    Google Scholar 

  • Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the ozone layer. Nature 441:39–45

    Google Scholar 

  • Zehnder ABJ (2001) Wasserressourcen und Bevölkerungsentwicklung. Nova Acta Leopoldina NF 85:399–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schaub .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaub, G., Turek, T. (2016). Global Material Cycles. In: Energy Flows, Material Cycles and Global Development. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-29495-7_4

Download citation

Publish with us

Policies and ethics