Instantiation Reduction in Iterative Parameterised Three-Valued Model Checking

  • Nils Timm
  • Stefan Gruner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9526)


We introduce an enhanced approach to parameterised three-valued model checking (PMC) based on iterative parameterisation. The model is parameterised until it is precise enough for a definite verification result. Results from past iterations are reused to reduce the number of parameter instances in future iterations. Our approach is based on a SAT encoding. In the initial iteration we construct an over-approximation of all possible instances in later iterations. For this over-approximation we compute the set of all satisfying interpretations. All subsequent iterations are then accomplished by validating whether for each instance one of the precomputed interpretations is satisfying as well, which is less costly than solving each SAT instance from scratch. Our iterative parameterisation approach leads to a substantial speed-up of PMC.


Model Check Kripke Structure Bounded Model Check Model Check Problem Parameterisation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model checking: a technique to pass information between verifiers. In: Proceedings of the ACM SIGSOFT FSE 2012, pp. 57:1–57:11. ACM, New York (2012)Google Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. Handbook of Satisfiability, vol. 185, pp. 457–481. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, EAllen, Sistla, Aravinda Prasad (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Sharygina, N., Yorav, K., Clarke, E., Kroning, D.: SATABS: SAT-based predicate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefGoogle Scholar
  7. 7.
    Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informaticae 20(1–3), 113–131 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Schuster, A., Grumberg, O., Yadgar, A.: Memory efficient all-solutions SAT solver and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 275–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Wei, O., Chechik, M., Gurfinkel, A.: Yasm: a software model-checker for verification and refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 170–174. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. J. Satisfiability Boolean Model. Comput. 7, 59–64 (2010)Google Scholar
  11. 11.
    Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Verifying Concurrent Systems, Ph.D thesis, University of Paderborn (2013)Google Scholar
  12. 12.
    Gruner, S., Timm, N.: Parameterisation of three-valued abstractions. In: Braga, C., Martí-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp. 162–178. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Sibanda, P., Gruner, S., Timm, N.: Parallel SAT-based parameterised three-valued model checking. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 242–259. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Yu, Y., Subramanyan, P., Tsiskaridze, N., Malik, S.: All-SAT using minimal blocking clauses. VLSI Design 2014, pp. 86–91 (2014)Google Scholar
  15. 15.
    Zhao, W., Wu, W.: Asig: An all-solution sat solver for cnf formulas. In: 11th IEEE International Conference on CAD/Graphics, pp. 508–513, August 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations