Skip to main content

Clinical and Biological Relevance of Visible and Infrared Radiation

Abstract

Visible and infrared radiation spectra have numerous biological and clinical effects on the skin. Visible spectrum radiation can induce transient erythema and persistent pigmentation and can also induce free radical production along with DNA damage. Visible light also plays a role in the pathogenesis of solar urticarial, chronic actinic dermatitis, and porphyrias and is used in the treatment of hyperbilirubinemia and acne vulgaris. Infrared radiation is capable of inducing erythema, thermal pain, and photoaging in addition to cytotoxicity, DNA damage, and oxidative stress. Infrared radiation can also cause erythema ab igne and plays a role in the treatment of acne vulgaris. Lasers in the visible and infrared spectrum have been widely used in the treatment of a variety of dermatologic conditions such as vascular and pigmented lesions and keloids. Photoprotection from visible and infrared radiation and diagnostic imaging using visible and infrared radiation are important topics that have recently been explored.

Keywords

  • Visible
  • Infrared
  • Radiation
  • Light
  • Laser
  • Photoprotection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-29382-0_1
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-29382-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   209.00
Price excludes VAT (USA)
Fig. 1.1

References

  1. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Baron ED, Suggs AK (2014) Introduction to photobiology. Dermatol Clin 32(3):255–266, vii

    CAS  CrossRef  PubMed  Google Scholar 

  3. Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27(4):227–238

    CAS  CrossRef  PubMed  Google Scholar 

  4. Rabe JH et al (2006) Photoaging: mechanisms and repair. J Am Acad Dermatol 55(1):1–19

    CrossRef  PubMed  Google Scholar 

  5. Tanzi EL, Lupton JR, Alster TS (2003) Lasers in dermatology: four decades of progress. J Am Acad Dermatol 49(1):1–31; quiz 31–34

    CrossRef  PubMed  Google Scholar 

  6. Sklar LR et al (2013) Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci 12(1):54–64

    CAS  CrossRef  PubMed  Google Scholar 

  7. Honigsmann H (2002) Erythema and pigmentation. Photodermatol Photoimmunol Photomed 18(2):75–81

    CrossRef  PubMed  Google Scholar 

  8. Schmalwieser AW, Wallisch S, Diffey B (2012) A library of action spectra for erythema and pigmentation. Photochem Photobiol Sci 11(2):251–268

    CAS  CrossRef  PubMed  Google Scholar 

  9. Mahmoud BH et al (2010) Impact of long-wavelength UVA and visible light on melanocompetent skin. J Invest Dermatol 130(8):2092–2097

    CAS  CrossRef  PubMed  Google Scholar 

  10. Parrish JA, Zaynoun S, Anderson RR (1981) Cumulative effects of repeated subthreshold doses of ultraviolet radiation. J Invest Dermatol 76(5):356–358

    CAS  CrossRef  PubMed  Google Scholar 

  11. Harmful effects of ultraviolet radiation. Council on Scientific Affairs (1989) JAMA 262(3):380–384

    Google Scholar 

  12. Rottier PB, Van Der Leun JC (1960) Hyperaemia of the deeper cutaneous vessels after irradiation of human skin with large doses of ultra-violet and visible light. Br J Dermatol 72:256–260

    CAS  CrossRef  PubMed  Google Scholar 

  13. Porges SB, Kaidbey KH, Grove GL (1988) Quantification of visible light-induced melanogenesis in human skin. Photodermatol 5(5):197–200

    CAS  PubMed  Google Scholar 

  14. Lim HW, Honigsmann H, Hawk JLM (2007) Photodermatology. Informa Healthcare USA, Inc., New York, pp 75–89

    Google Scholar 

  15. Kollias N, Baqer A (1984) An experimental study of the changes in pigmentation in human skin in vivo with visible and near infrared light. Photochem Photobiol 39(5):651–659

    CAS  CrossRef  PubMed  Google Scholar 

  16. Rosen CF et al (1990) Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum. Photochem Photobiol 51(5):583–588

    CAS  CrossRef  PubMed  Google Scholar 

  17. Pathak MA, Riley FC, Fitzpatrick TB (1962) Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. J Invest Dermatol 39:435–443

    CAS  CrossRef  PubMed  Google Scholar 

  18. Ramasubramaniam R et al (2011) Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation? Photochem Photobiol Sci 10(12):1887–1893

    CAS  CrossRef  PubMed  Google Scholar 

  19. Duteil L et al (2014) Differences in visible light-induced pigmentation according to wavelengths: a clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res 27(5):822–826

    CAS  CrossRef  PubMed  Google Scholar 

  20. Loertzer H et al (2006) Formation of ascorbate radicals as a measure of oxidative stress: an in vitro electron spin resonance-study using 2,2-Azobis (2-amidinopropane) dihydrochloride as a radical generator. Transplant Proc 38(3):674–678

    CAS  CrossRef  PubMed  Google Scholar 

  21. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Buettner GR, Jurkiewicz BA (1993) Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med 14(1):49–55

    CAS  CrossRef  PubMed  Google Scholar 

  23. Haywood R (2006) Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: a study of ex vivo human skin. Photochem Photobiol 82(4):1123–1131

    CAS  CrossRef  PubMed  Google Scholar 

  24. Mahmoud BH et al (2008) Effects of visible light on the skin. Photochem Photobiol 84(2):450–462

    CAS  CrossRef  PubMed  Google Scholar 

  25. Liebel F et al (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 132(7):1901–1907

    CAS  CrossRef  PubMed  Google Scholar 

  26. Edstrom DW, Porwit A, Ros AM (2001) Effects on human skin of repetitive ultraviolet-A1 (UVA1) irradiation and visible light. Photodermatol Photoimmunol Photomed 17(2):66–70

    CAS  CrossRef  PubMed  Google Scholar 

  27. Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18(4):811–816

    CAS  CrossRef  PubMed  Google Scholar 

  28. Hoffmann-Dorr S et al (2005) Visible light (>395 nm) causes micronuclei formation in mammalian cells without generation of cyclobutane pyrimidine dimers. Mutat Res 572(1–2):142–149

    CrossRef  PubMed  Google Scholar 

  29. Champion RH (1988) Urticaria: then and now. Br J Dermatol 119(4):427–436

    CAS  CrossRef  PubMed  Google Scholar 

  30. Stratigos AJ et al (2003) Spectrum of idiopathic photodermatoses in a Mediterranean country. Int J Dermatol 42(6):449–454

    CrossRef  PubMed  Google Scholar 

  31. Uetsu N et al (2000) The clinical and photobiological characteristics of solar urticaria in 40 patients. Br J Dermatol 142(1):32–38

    CAS  CrossRef  PubMed  Google Scholar 

  32. Ryckaert S, Roelandts R (1998) Solar urticaria. A report of 25 cases and difficulties in phototesting. Arch Dermatol 134(1):71–74

    CAS  CrossRef  PubMed  Google Scholar 

  33. Nitiyarom R, Wongpraparut C (2014) Hydroa vaccin iforme and solar urticaria. Dermatol Clin 32(3):345–353, viii

    CAS  CrossRef  PubMed  Google Scholar 

  34. Hasei K, Ichihashi M (1982) Solar urticaria. Determinations of action and inhibition spectra. Arch Dermatol 118(5):346–350

    CAS  CrossRef  PubMed  Google Scholar 

  35. Leenutaphong V et al (1987) Plasmapheresis in solar urticaria. Photodermatol 4(6):308–309

    CAS  PubMed  Google Scholar 

  36. Dawe RS, Ferguson J (2003) Diagnosis and treatment of chronic actinic dermatitis. Dermatol Ther 16(1):45–51

    CrossRef  PubMed  Google Scholar 

  37. Lim HW et al (1994) Chronic actinic dermatitis. An analysis of 51 patients evaluated in the United States and Japan. Arch Dermatol 130(10):1284–1289

    CAS  CrossRef  PubMed  Google Scholar 

  38. Paek SY, Lim HW (2014) Chronic actinic dermatitis. Dermatol Clin 32(3):355–361, viii–ix

    CAS  CrossRef  PubMed  Google Scholar 

  39. Schulenburg-Brand D et al (2014) The cutaneous porphyrias. Dermatol Clin 32(3):369–384, ix

    CAS  CrossRef  PubMed  Google Scholar 

  40. Ennever JF (1990) Blue light, green light, white light, more light: treatment of neonatal jaundice. Clin Perinatol 17(2):467–481

    CAS  PubMed  Google Scholar 

  41. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia (2004) Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114(1):297–316

    CrossRef  Google Scholar 

  42. Maisels MJ, Kring EA, DeRidder J (2007) Randomized controlled trial of light-emitting diode phototherapy. J Perinatol 27(9):565–567

    CAS  CrossRef  PubMed  Google Scholar 

  43. Onishi S et al (1986) Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J Biochem 100(3):789–795

    CAS  PubMed  Google Scholar 

  44. Lightner DA, Linnane WP 3rd, Ahlfors CE (1984) Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr Res 18(8):696–700

    CAS  CrossRef  PubMed  Google Scholar 

  45. Jori G, Rossi E, Rubaltelli FF (1980) Phototherapy-induced covalent binding of bilirubin to serum albumin. Pediatr Res 14(12):1363–1366

    CAS  CrossRef  PubMed  Google Scholar 

  46. Papageorgiou P, Katsambas A, Chu A (2000) Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol 142(5):973–978

    CAS  CrossRef  PubMed  Google Scholar 

  47. Cunliffe WJ, Goulden V (2000) Phototherapy and acne vulgaris. Br J Dermatol 142(5):855–856

    CAS  CrossRef  PubMed  Google Scholar 

  48. Rkein AM, Ozog DM (2014) Photodynamic therapy. Dermatol Clin 32(3):415–425, x

    CAS  CrossRef  PubMed  Google Scholar 

  49. Piazena H, Kelleher DK (2010) Effects of infrared-A irradiation on skin: discrepancies in published data highlight the need for an exact consideration of physical and photobiological laws and appropriate experimental settings. Photochem Photobiol 86(3):687–705

    CAS  CrossRef  PubMed  Google Scholar 

  50. Pujol JA, Lecha M (1992) Photoprotection in the infrared radiation range. Photodermatol Photoimmunol Photomed 9(6):275–278

    PubMed  Google Scholar 

  51. Lee HS et al (2006) Minimal heating dose: a novel biological unit to measure infrared irradiation. Photodermatol Photoimmunol Photomed 22(3):148–152

    CrossRef  PubMed  Google Scholar 

  52. Kligman LH (1982) Intensification of ultraviolet-induced dermal damage by infrared radiation. Arch Dermatol Res 272(3–4):229–238

    CAS  CrossRef  PubMed  Google Scholar 

  53. Schroeder P et al (2008) Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol 128(10):2491–2497

    CAS  CrossRef  PubMed  Google Scholar 

  54. Krutmann J, Schroeder P (2009) Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc 14(1):44–49

    CAS  CrossRef  PubMed  Google Scholar 

  55. Krutmann J, Morita A, Chung JH (2012) Sun exposure: what molecular photodermatology tells us about its good and bad sides. J Invest Dermatol 132(3 Pt 2):976–984

    CAS  CrossRef  PubMed  Google Scholar 

  56. Shin MH et al (2012) Chronic heat treatment causes skin wrinkle formation and oxidative damage in hairless mice. Mech Ageing Dev 133(2–3):92–98

    CAS  CrossRef  PubMed  Google Scholar 

  57. Menezes S et al (1998) Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4):629–633

    CAS  CrossRef  PubMed  Google Scholar 

  58. Jantschitsch C et al (2009) Infrared radiation confers resistance to UV-induced apoptosis via reduction of DNA damage and upregulation of antiapoptotic proteins. J Invest Dermatol 129(5):1271–1279

    CAS  CrossRef  PubMed  Google Scholar 

  59. Zastrow L et al (2009) The missing link – light-induced (280–1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22(1):31–44

    CAS  CrossRef  PubMed  Google Scholar 

  60. Jung T et al (2010) Effects of water-filtered infrared A irradiation on human fibroblasts. Free Radic Biol Med 48(1):153–160

    CAS  CrossRef  PubMed  Google Scholar 

  61. Miller K et al (2011) Erythema ab igne. Dermatol Online J 17(10):28

    PubMed  Google Scholar 

  62. Paithankar DY et al (2002) Acne treatment with a 1,450 nm wavelength laser and cryogen spray cooling. Lasers Surg Med 31(2):106–114

    CrossRef  PubMed  Google Scholar 

  63. Lloyd JR, Mirkov M (2002) Selective photothermolysis of the sebaceous glands for acne treatment. Lasers Surg Med 31(2):115–120

    CrossRef  PubMed  Google Scholar 

  64. Hruza GJ, Avram MM (2013) Lasers and lights: procedures in cosmetic dermatology, 3rd edn. Elsevier

    Google Scholar 

  65. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527

    CAS  CrossRef  PubMed  Google Scholar 

  66. Levine VJ, Geronemus RG (1995) Adverse effects associated with the 577- and 585-nanometer pulsed dye laser in the treatment of cutaneous vascular lesions: a study of 500 patients. J Am Acad Dermatol 32(4):613–617

    CAS  CrossRef  PubMed  Google Scholar 

  67. Weiss RA, Weiss MA (1999) Early clinical results with a multiple synchronized pulse 1064 NM laser for leg telangiectasias and reticular veins. Dermatol Surg 25(5):399–402

    CAS  CrossRef  PubMed  Google Scholar 

  68. Margolis RJ et al (1989) Visible action spectrum for melanin-specific selective photothermolysis. Lasers Surg Med 9(4):389–397

    CAS  CrossRef  PubMed  Google Scholar 

  69. Lask G et al (1997) Laser-assisted hair removal by selective photothermolysis. Preliminary results. Dermatol Surg 23(9):737–739

    CAS  CrossRef  PubMed  Google Scholar 

  70. McDaniel DH et al (1999) Laser hair removal: a review and report on the use of the long-pulsed alexandrite laser for hair reduction of the upper lip, leg, back, and bikini region. Dermatol Surg 25(6):425–430

    CAS  CrossRef  PubMed  Google Scholar 

  71. Alster TS, Williams CM (1995) Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 345(8959):1198–1200

    CAS  CrossRef  PubMed  Google Scholar 

  72. Lupton JR, Alster TS (2002) Laser scar revision. Dermatol Clin 20(1):55–65

    CrossRef  PubMed  Google Scholar 

  73. Manuskiatti W, Fitzpatrick RE (2002) Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Arch Dermatol 138(9):1149–1155

    CAS  CrossRef  PubMed  Google Scholar 

  74. Sadick NS et al (2000) Long-term photoepilation using a broad-spectrum intense pulsed light source. Arch Dermatol 136(11):1336–1340

    CAS  CrossRef  PubMed  Google Scholar 

  75. Lev-Tov H et al (2013) Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg 39(8):1167–1170

    CAS  CrossRef  PubMed  Google Scholar 

  76. Lan CC et al (2009) Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol 161(2):273–280

    CAS  CrossRef  PubMed  Google Scholar 

  77. Yu HS et al (2003) Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Invest Dermatol 120(1):56–64

    CAS  CrossRef  PubMed  Google Scholar 

  78. Demidova-Rice TN et al (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39(9):706–715

    CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Dougal G, Lee SY (2013) Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 38(7):713–718

    CAS  PubMed  Google Scholar 

  80. Calzavara-Pinton P et al (2010) A critical reappraisal of off-label indications for topical photodynamic therapy with aminolevulinic acid and methylaminolevulinate. Rev Recent Clin Trials 5(2):112–116

    CAS  CrossRef  PubMed  Google Scholar 

  81. Wan MT, Lin JY (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145–163

    PubMed  PubMed Central  Google Scholar 

  82. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    CAS  CrossRef  PubMed  Google Scholar 

  83. Meinke MC et al (2013) Radical protection by differently composed creams in the UV/VIS and IR spectral ranges. Photochem Photobiol 89(5):1079–1084

    CAS  CrossRef  PubMed  Google Scholar 

  84. Castanedo-Cazares JP et al (2014) Near-visible light and UV photoprotection in the treatment of melasma: a double-blind randomized trial. Photodermatol Photoimmunol Photomed 30(1):35–42

    CAS  CrossRef  PubMed  Google Scholar 

  85. Rajadhyaksha M, Anderson RR, Webb RH (1999) Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl Opt 38(10):2105–2115

    CAS  CrossRef  PubMed  Google Scholar 

  86. Rajadhyaksha M et al (1999) In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol 113(3):293–303

    CAS  CrossRef  PubMed  Google Scholar 

  87. Selkin B et al (2001) In vivo confocal microscopy in dermatology. Dermatol Clin 19(2):369–377, ix–x

    CAS  CrossRef  PubMed  Google Scholar 

  88. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7(1):1–9

    CAS  CrossRef  PubMed  Google Scholar 

  89. Welzel J et al (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963

    CAS  CrossRef  PubMed  Google Scholar 

  90. van der Vorst JR et al (2013) Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. Br J Dermatol 168(1):93–98

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Padilla-Medina JA et al (2014) Assessment technique for acne treatments based on statistical parameters of skin thermal images. J Biomed Opt 19(4):046019

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iltefat Hamzavi MD, FAAD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lawrence, K., Al-Jamal, M., Kohli, I., Hamzavi, I. (2016). Clinical and Biological Relevance of Visible and Infrared Radiation. In: Wang, S., Lim, H. (eds) Principles and Practice of Photoprotection. Adis, Cham. https://doi.org/10.1007/978-3-319-29382-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29382-0_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-29381-3

  • Online ISBN: 978-3-319-29382-0

  • eBook Packages: MedicineMedicine (R0)