Skip to main content

Organotypic Models for Evaluating Sunscreens

Abstract

The protective role of the skin is mostly ensured by the two compartments dermis and epidermis, both of which are highly affected by acute or chronic solar UV exposure. The precise characterization of early UV-induced skin damage is crucial for the understanding of resulting clinical consequences but also essential to design and evaluate photoprotection incurred by sunscreens. Due to physiological relevance of three-dimensional (3-D) organization that allows to account for the penetration properties of UV wavelengths, in vitro organotypic skin models represent useful and predictive models in the field of photoprotection. In vitro reconstructed skins were indeed validated for their ability to reproduce several in vivo situations, from sunburn-related biological markers to early events linked to UV-induced cancer development and dermal alterations associated with photoaging process. Combining different types of UV exposure conditions (i.e., UVB, UVA, solar-simulated radiation, or daily UV light), the models were able to give clues on biochemical and molecular events that alter the cutaneous tissue. From simple UV absorbers to complex sunscreen formulations, these models could be used to assess the protection against UV-induced skin damage up to the molecular level using transcriptomic approaches. The level of protection could be compared between sunscreens having different absorption profiles. The use of models comprising additional cell types such as melanocytes or Langerhans cells also gives rise to the assessment of biological parameters related to UV-induced pigmentation or immune function modulation.

Keywords

  • Dermal Fibroblast
  • Skin Model
  • Pyrimidine Dimer
  • Dermal Equivalent
  • Sunscreen Product

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-29382-0_12
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-29382-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   209.00
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7

References

  1. Aberer W, Schuler G, Stingl G et al (1981) Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol 76:202–210

    CAS  PubMed  CrossRef  Google Scholar 

  2. Afaq F, Zaid MA, Khan N et al (2009) Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp Dermatol 18:553–561

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Applegate LA, Noel A, Vile G et al (1995) Two genes contribute to different extents to the heme oxygenase enzyme activity measured in cultured human skin fibroblasts and keratinocytes: implications for protection against oxidant stress. Photochem Photobiol 61:285–291

    CAS  PubMed  CrossRef  Google Scholar 

  4. Archambault M, Yaar M, Gilchrest BA (1995) Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol 104:859–867

    CAS  PubMed  CrossRef  Google Scholar 

  5. Asselineau D, Bernhard B, Bailly C et al (1985) Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res 159:536–539

    CAS  PubMed  CrossRef  Google Scholar 

  6. Augustin C, Collombel C, Damour O (1997) Measurements of the protective effect of topically applied sunscreens using in vitro three-dimensional dermal and skin equivalents. Photochem Photobiol 66:853–859

    CAS  PubMed  CrossRef  Google Scholar 

  7. Bacci S, Romagnoli P, Streilein JW (1998) Reduction in number and morphologic alterations of Langerhans cells after UVB radiation in vivo are accompanied by an influx of monocytoid cells into the epidermis. J Invest Dermatol 111:1134–1139

    CAS  PubMed  CrossRef  Google Scholar 

  8. Bacqueville D, Mavon A (2009) Comparative analysis of solar radiation-induced cellular damage between ex vivo porcine skin organ culture and in vitro reconstructed human epidermis. Int J Cosmet Sci 31:293–302

    CAS  PubMed  CrossRef  Google Scholar 

  9. Bart G, Hamalainen L, Rauhala L et al (2014) rClca2 is associated with epidermal differentiation and is strongly downregulated by ultraviolet radiation. Br J Dermatol 171:376–387

    CAS  PubMed  CrossRef  Google Scholar 

  10. Bechetoille N, Dezutter-Dambuyant C, Damour O et al (2007) Effects of solar ultraviolet radiation on engineered human skin equivalent containing both Langerhans cells and dermal dendritic cells. Tissue Eng 13:2667–2679

    CAS  PubMed  CrossRef  Google Scholar 

  11. Berneburg M, Kurten V, Grether-Beck S et al (1998) Induction of mitochondrial (MT) DNA mutations in human fibroblasts by in vitro ultraviolet A irradiation. J Invest Dermatol 110:489

    Google Scholar 

  12. Bernerd F, Asselineau D (1997) Successive alteration and recovery of epidermal differentiation and morphogenesis after specific UVB-damages in skin reconstructed in vitro. Dev Biol 183:123–138

    CAS  PubMed  CrossRef  Google Scholar 

  13. Bernerd F, Asselineau D (1998) UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: subsequent connective tissue repair and implications in photoaging. Cell Death Differ 5:792–802

    CAS  PubMed  CrossRef  Google Scholar 

  14. Bernerd F, Asselineau D (2001) Reconstructed human skin: effect of solar UV light and use to evaluate efficiency of sunscreens in vitro. Cosmet Dermatol 14:15–19

    Google Scholar 

  15. Bernerd F, Asselineau D, Vioux C et al (2001) Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro. Proc Natl Acad Sci U S A 98:7817–7822

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Bernerd F, Marionnet C, Duval C (2012) Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection. Indian J Dermatol Venereol Leprol 78(Suppl):S15–S23

    PubMed  CrossRef  Google Scholar 

  17. Bernerd F, Sarasin A, Magnaldo T (1999) Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc Natl Acad Sci U S A 96:11329–11334

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Bernerd F, Vioux C, Asselineau D (2000) Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation. Photochem Photobiol 71:314–320

    CAS  PubMed  CrossRef  Google Scholar 

  19. Bernerd F, Vioux C, Lejeune F et al (2003) The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation. Eur J Dermatol 13:242–249

    CAS  PubMed  Google Scholar 

  20. Bessou S, Surlève-Bazeille JE, Pain C et al (1996) Ex vivo study of skin phototypes. J Invest Dermatol 107:684–688

    CAS  PubMed  CrossRef  Google Scholar 

  21. Bessou S, Surlève-Bazeille JE, Sorbier E et al (1995) Ex vivo reconstruction of the epidermis with melanocytes and the influence of UVB. Pigment Cell Res 8:241–249

    CAS  PubMed  CrossRef  Google Scholar 

  22. Bissonauth V, Drouin R, Mitchell DL et al (2000) The efficacy of a broad-spectrum sunscreen to protect engineered human skin from tissue and DNA damage induced by solar ultraviolet exposure. Clin Cancer Res 6:4128–4135

    CAS  PubMed  Google Scholar 

  23. Blumenberg M (2006) DNA microarrays in dermatology and skin biology. OMICS 10:243–260

    CAS  PubMed  CrossRef  Google Scholar 

  24. Cario-André M, Briganti S, Picardo M et al (2002) Epidermal reconstructs: a new tool to study topical and systemic photoprotective molecules. J Photochem Photobiol B 68:79–87

    PubMed  CrossRef  Google Scholar 

  25. Chen VL, Fleischmajer R, Schwartz E et al (1986) Immunochemistry of elastotic material in sun-damaged skin. J Invest Dermatol 87:334–337

    CAS  PubMed  CrossRef  Google Scholar 

  26. Christiaens FJ, Chardon A, Fourtanier A et al (2005) Standard ultraviolet daylight for nonextreme exposure conditions. Photochem Photobiol 81:874–878

    CAS  PubMed  CrossRef  Google Scholar 

  27. Clausen BE, Kel JM (2010) Langerhans cells: critical regulators of skin immunity? Immunol Cell Biol 88:351–360

    CAS  PubMed  CrossRef  Google Scholar 

  28. Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79:547–568

    CAS  PubMed  CrossRef  Google Scholar 

  29. Cohen C, Roguet R, Cottin M (1998) The use of a reconstructed epidermis in the evaluation of protective effect of sunscreens against chemical phototoxicity by UVA. In: Rougier A, Schaefer H (eds) Protection of the skin against utraviolet radiations. John Libbey Eurotext, Paris, pp 195–199

    Google Scholar 

  30. Cole C, VanFossen R (1992) Measurement of sunscreen UVA protection: an unsensitized human model. J Am Acad Dermatol 26:178–184

    CAS  PubMed  CrossRef  Google Scholar 

  31. Cooper KD, Oberhelman L, Hamilton TA et al (1992) UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion. Proc Natl Acad Sci U S A 89:8497–8501

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Corsini E, Sangha N, Feldman SR (1997) Epidermal stratification reduces the effects of UVB (but not UVA) on keratinocyte cytokine production and cytotoxicity. Photodermatol Photoimmunol Photomed 13:147–152

    CAS  PubMed  CrossRef  Google Scholar 

  33. Cotovio J, Pellevoisin C, Parsad D (2014) In vitro skin models. In: Srinivas CR, Verschoore M (eds) Basic science for modern cosmetic dermatology. Jaypee Brothers Medical Publishers, New Delhi, pp 25–46

    Google Scholar 

  34. Coulomb B, Lebreton C, Mathieu N et al (1996) UVA-induced oxidative damage in fibroblasts cultured in a 3-dimensional collagen matrix. Exp Dermatol 5:161–167

    CAS  PubMed  CrossRef  Google Scholar 

  35. Dehaven C, Hayden PJ, Armento A, Oldach J (2014) DNA photoprotection conveyed by sunscreen. J Cosmet Dermatol 13:99–102

    PubMed  CrossRef  Google Scholar 

  36. Dekker P, Parish WE, Green MR (2005) Protection by food-derived antioxidants from UV-A1-induced photodamage, measured using living skin equivalents. Photochem Photobiol 81:837–842

    CAS  PubMed  CrossRef  Google Scholar 

  37. Duval C, Chagnoleau C, Pouradier F et al (2012) Human skin model containing melanocytes: essential role of keratinocyte growth factor for constitutive pigmentation-functional response to alpha-melanocyte stimulating hormone and forskolin. Tissue Eng Part C Methods 18:947–957

    CAS  PubMed  CrossRef  Google Scholar 

  38. Duval C, Regnier M, Schmidt R (2001) Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Res 14:348–355

    CAS  PubMed  CrossRef  Google Scholar 

  39. Duval C, Schmidt R, Regnier M et al (2003) The use of reconstructed human skin to evaluate UV-induced modifications and sunscreen efficacy. Exp Dermatol 12 Suppl 2:64–70

    PubMed  CrossRef  Google Scholar 

  40. Egles C, Garlick JA, Shamis Y (2010) Three-dimensional human tissue models of wounded skin. Methods Mol Biol 585:345–359

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Enk CD, Shahar I, Amariglio N et al (2004) Gene expression profiling of in vivo UVB-irradiated human epidermis. Photodermatol Photoimmunol Photomed 20:129–137

    CAS  PubMed  CrossRef  Google Scholar 

  42. Eungdamrong NJ, Higgins C, Guo Z et al (2014) Challenges and promises in modeling dermatologic disorders with bioengineered skin. Exp Biol Med (Maywood) 239:1215–1224

    CrossRef  CAS  Google Scholar 

  43. Evans-Johnson JA, Garlick JA, Johnson EJ et al (2013) A pilot study of the photoprotective effect of almond phytochemicals in a 3D human skin equivalent. J Photochem Photobiol B 126:17–25

    CAS  PubMed  CrossRef  Google Scholar 

  44. Facy V, Flouret V, Régnier M et al (2005) Reactivity of Langerhans cells in human reconstructed epidermis to known allergens and UV radiation. Toxicol In Vitro 19:787–795

    CAS  PubMed  CrossRef  Google Scholar 

  45. Fagot D, Asselineau D, Bernerd F (2002) Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation. Arch Dermatol Res 293:576–583

    CAS  PubMed  CrossRef  Google Scholar 

  46. Fagot D, Asselineau D, Bernerd F (2004) Matrix metalloproteinase-1 production observed after solar-simulated radiation exposure is assumed by dermal fibroblasts but involves a paracrine activation through epidermal keratinocytes. Photochem Photobiol 79:499–505

    CAS  PubMed  CrossRef  Google Scholar 

  47. Fernandez TL, Van Lonkhuyzen DR, Dawson RA et al (2014) Characterization of a human skin equivalent model to study the effects of ultraviolet B radiation on keratinocytes. Tissue Eng Part C Methods 20:588–598

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Fisher GJ, Datta SC, Talwar HS et al (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    CAS  PubMed  CrossRef  Google Scholar 

  49. Flamand N, Marrot L, Belaidi JP et al (2006) Development of genotoxicity test procedures with Episkin, a reconstructed human skin model: towards new tools for in vitro risk assessment of dermally applied compounds? Mutat Res 606:39–51

    CAS  PubMed  CrossRef  Google Scholar 

  50. Freeman SE, Ley RD, Ley KD (1988) Sunscreen protection against UV-induced pyrimidine dimers in DNA of human skin in situ. Photodermatol 5:243–247

    CAS  PubMed  Google Scholar 

  51. Gelis C, Mavon A, Vicendo P (2003) Evaluation of biological effects of ultraviolet radiations and of photoprotection on human reconstructed epidermis. Nouvelles Dermatol 22:351

    Google Scholar 

  52. Gibbs S, Murli S, De Boer G et al (2000) Melanosome capping of keratinocytes in pigmented reconstructed epidermis–effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis. Pigment Cell Res 13:458–466

    CAS  PubMed  CrossRef  Google Scholar 

  53. Grothmann K, Kaase H (1993) Testung von Lichtschutzmitteln: Vorschlag zur Definition einer Referenz-Spektralverteilung für UV-Sonnensimulatoren (Sun protection measurement: proposal for a definition of a UV solar simulator standard spectrum). Dermatol Monatsschr 179:108–111

    Google Scholar 

  54. Gruber F, Oskolkova O, Leitner A et al (2007) Photooxidation generates biologically active phospholipids that induce heme oxygenase-1 in skin cells. J Biol Chem 282:16934–16941

    CAS  PubMed  CrossRef  Google Scholar 

  55. Haake AR, Polakowska RR (1995) UV-induced apoptosis in skin equivalents: inhibition by phorbol ester and Bcl-2 overexpression. Cell Death Differ 2:183–193

    CAS  PubMed  Google Scholar 

  56. Haake A, Scott GA, Holbrook KA (2001) Structure and function of the skin: overview of the epidermis and dermis. In: Freinkel RK, Woodley DT (eds) The biology of the skin. Parthenon Publishing Group Limited, Lancs, pp 19–45

    Google Scholar 

  57. Halliday GM (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571:107–120

    CAS  PubMed  CrossRef  Google Scholar 

  58. Halliday GM, Byrne SN, Damian DL (2011) Ultraviolet A radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg 30:214–221

    CAS  PubMed  CrossRef  Google Scholar 

  59. Halliday GM, Cadet J (2012) It’s all about position: the basal layer of human epidermis is particularly susceptible to different types of sunlight-induced DNA damage. J Invest Dermatol 132:265–267

    CAS  PubMed  CrossRef  Google Scholar 

  60. Harriger MD, Hull BE (1994) Characterization of ultraviolet radiation-induced damage to keratinocytes in a skin equivalent in vitro. Arch Dermatol Res 286:319–324

    CAS  PubMed  CrossRef  Google Scholar 

  61. Haywood R, Volkov A, Andrady C et al (2012) Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method. Free Radic Res 46:265–275

    CAS  PubMed  CrossRef  Google Scholar 

  62. Hensbergen PJ, Alewijnse AE, Kempenaar J et al (2005) Proteomic profiling identifies an UV-induced activation of cofilin-1 and destrin in human epidermis. J Invest Dermatol 124:818–824

    CAS  PubMed  CrossRef  Google Scholar 

  63. Huang XX, Bernerd F, Halliday GM (2009) Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am J Pathol 174:1534–1543

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Javeri A, Huang XX, Bernerd F et al (2008) Human 8-oxoguanine-DNA glycosylase 1 protein and gene are expressed more abundantly in the superficial than basal layer of human epidermis. DNA Repair (Amst) 7:1542–1550

    CAS  CrossRef  Google Scholar 

  65. Kochevar I, Taylor R, Krutmann J (2008) Fundamentals of cutaneous photobiology and photoimmunology. In: Wolff K, Goldsmith LA, Katz SI (eds) Fitzpatrick’s dermatology in general medicine, 7th edn. McGraw-Hill, New York, pp 797–808

    Google Scholar 

  66. Kurdykowski S, Mine S, Bardey V et al (2011) Ultraviolet-B irradiation induces differential regulations of hyaluronidase expression and activity in normal human keratinocytes. Photochem Photobiol 87:1105–1112

    CAS  PubMed  CrossRef  Google Scholar 

  67. Kypriotou M, Huber M, Hohl D (2012) The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol 21:643–649

    CAS  PubMed  CrossRef  Google Scholar 

  68. Lavker RM, Veres DA, Irwin CJ et al (1995) Quantitative assessment of cumulative damage from repetitive exposures to suberythemogenic doses of UVA in human skin. Photochem Photobiol 62:348–352

    CAS  PubMed  CrossRef  Google Scholar 

  69. Lee SJ, Jung TH, Kim H et al (2014) Inhibition of c-Kit signaling by diosmetin isolated from Chrysanthemum morifolium. Arch Pharm Res 37:175–185

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Lehmann B, Genehr T, Knuschke P et al (2001) UVB-induced conversion of 7-dehydrocholesterol to 1α, 25- dihydroxyvitamin D3 in an in vitro human skin equivalent model. J Invest Dermatol 117:1179–1185

    Google Scholar 

  71. Lejeune F, Christiaens F, Bernerd F (2008) Evaluation of sunscreen products using a reconstructed skin model exposed to simulated daily ultraviolet radiation: relevance of filtration profile and SPF value for daily photoprotection. Photodermatol Photoimmunol Photomed 24:249–255

    PubMed  CrossRef  Google Scholar 

  72. Ley RD, Fourtanier A (1997) Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA. Photochem Photobiol 65:1007–1011

    CAS  PubMed  CrossRef  Google Scholar 

  73. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    CAS  PubMed  CrossRef  Google Scholar 

  74. Lowe NJ, Meyers DP, Wieder JM et al (1995) Low doses of repetitive ultraviolet A induce morphologic changes in human skin. J Invest Dermatol 105:739–743

    CAS  PubMed  CrossRef  Google Scholar 

  75. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880

    CAS  PubMed  CrossRef  Google Scholar 

  76. Mahns A, Wolber R, Stab F et al (2004) Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis. Photochem Photobiol Sci 3:257–262

    CAS  PubMed  CrossRef  Google Scholar 

  77. Maresca V, Flori E, Briganti S et al (2006) UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype. J Invest Dermatol 126:182–190

    CAS  PubMed  CrossRef  Google Scholar 

  78. Marionnet C, Grether-Beck S, Seite S et al (2011) A broad-spectrum sunscreen prevents UVA radiation-induced gene expression in reconstructed skin in vitro and in human skin in vivo. Exp Dermatol 20:477–482

    CAS  PubMed  CrossRef  Google Scholar 

  79. Marionnet C, Lejeune F, Pierrard C et al (2012) Biological contribution of UVA wavelengths in non extreme daily UV exposure. J Dermatol Sci 66:238–240

    CAS  PubMed  CrossRef  Google Scholar 

  80. Marionnet C, Pierrard C, Golebiewski C et al (2014) Diversity of biological effects induced by Longwave UVA rays (UVA1) in reconstructed skin. PLoS One 9:e105263

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  81. Marionnet C, Pierrard C, Lejeune F et al (2010) Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One 5:e12059

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  82. Marionnet C, Pierrard C, Lejeune F et al (2012) Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen. J Photochem Photobiol B 116:37–47

    CAS  PubMed  CrossRef  Google Scholar 

  83. Marionnet C, Tricaud C, Bernerd F (2014) Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection. Int J Mol Sci 16:68–90

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  84. Marrot L, Belaïdi JP, Lejeune F et al (2004) Photostability of sunscreen products influences the efficiency of protection with regard to UV-induced genotoxic or photoageing-related endpoints. Br J Dermatol 151:1234–1244

    CAS  PubMed  CrossRef  Google Scholar 

  85. Marrot L, Planel E, Ginestet AC et al (2010) In vitro tools for photobiological testing: molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. Photochem Photobiol Sci 9:448–458

    CAS  PubMed  CrossRef  Google Scholar 

  86. Meloni M, Farina A, de Servi B (2010) Molecular modifications of dermal and epidermal biomarkers following UVA exposures on reconstructed full-thickness human skin. Photochem Photobiol Sci 9:439–447

    CAS  PubMed  CrossRef  Google Scholar 

  87. Moyal D, Chardon A, Kollias N (2000) Determination of UVA protection factors using the persistent pigment darkening (PPD) as the end point. (Part 1). Calibration of the method. Photodermatol Photoimmunol Photomed 16:245–249

    CAS  PubMed  CrossRef  Google Scholar 

  88. Moysan A, Clement-Lacroix P, Michel L et al (1996) Effects of ultraviolet A and antioxidant defense in cultured fibroblasts and keratinocytes. Photodermatol Photoimmunol Photomed 11:192–197

    CAS  PubMed  CrossRef  Google Scholar 

  89. Muller HK, Woods GM (2013) Ultraviolet radiation effects on the proteome of skin cells. Adv Exp Med Biol 990:111–119

    CAS  PubMed  CrossRef  Google Scholar 

  90. Nakazawa K, Nakazawa H, Sahuc F et al (1997) Pigmented human skin equivalent: new method of reconstitution by grafting an epithelial sheet onto a non-contractile dermal equivalent. Pigment Cell Res 10:382–390

    CAS  PubMed  CrossRef  Google Scholar 

  91. Neale R, Russell A, Muller HK et al (1997) Sun exposure, sunscreen and their effects on epidermal Langerhans cells. Photochem Photobiol 66:260–264

    CAS  PubMed  CrossRef  Google Scholar 

  92. Nelson D, Gay RJ (1993) Effects of UV irradiation on a living skin equivalent. Photochem Photobiol 57:830–837

    CAS  PubMed  CrossRef  Google Scholar 

  93. Nix TE Jr (1967) Ultraviolet-induced changes in epidermis. In: Zelickson AS (ed) Ultrastructure of normal and abnormal skin. Lea & Febiger, Philadelphia, pp 304–319

    Google Scholar 

  94. Nix TE Jr, Nordquist RE, Scott JR et al (1965) Ultrastructural changes induced by ultraviolet light in human epidermis: basal and spinous layers. J Invest Dermatol 45:52–64

    PubMed  CrossRef  Google Scholar 

  95. Obi-Tabot ET, Tian XQ, Chen TC et al (2000) A human skin equivalent model that mimics the photoproduction of vitamin D3 in human skin. In Vitro Cell Dev Biol 36:201–204

    CAS  CrossRef  Google Scholar 

  96. Olsen WM (1988) Early cell kinetic effects of a single dose of monochromatic ultraviolet B irradiation on hairless mouse epidermis. J Invest Dermatol 91:585–589

    CAS  PubMed  CrossRef  Google Scholar 

  97. Pathak MA, Fanselow DL (1983) Photobiology of melanin pigmentation: dose/response of skin to sunlight and its contents. J Am Acad Dermatol 9:724–733

    CAS  PubMed  CrossRef  Google Scholar 

  98. Podda M, Traber MG, Weber C et al (1998) UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med 24:55–65

    CAS  PubMed  CrossRef  Google Scholar 

  99. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    PubMed  CrossRef  Google Scholar 

  100. Prunieras M (1979) Epidermal cell cultures as models for living epidermis. J Invest Dermatol 73:135–137

    CAS  PubMed  CrossRef  Google Scholar 

  101. Rasmussen C, Gratz K, Liebel F et al (2010) The StrataTest(R) human skin model, a consistent in vitro alternative for toxicological testing. Toxicol In Vitro 24:2021–2029

    CAS  PubMed  CrossRef  Google Scholar 

  102. Reece BT, Deeds D, Rozen M (1992) As an in vitro method for screening sunscreen formulations for sun protection factor using a full-thickness skin model. J Soc Cosmet Chem 43:307–312

    CAS  Google Scholar 

  103. Robert M, Bissonauth V, Ross G et al (1999) Harmful effects of UVA on the structure and barrier function of engineered human cutaneous tissues. Int J Radiat Biol 75:317–326

    CAS  PubMed  CrossRef  Google Scholar 

  104. Rouabhia M, Mitchell DL, Rhainds M et al (2002) A physical sunscreen protects engineered human skin against artificial solar ultraviolet radiation-induced tissue and DNA damage. Photochem Photobiol Sci 1:471–477

    CAS  PubMed  CrossRef  Google Scholar 

  105. Seite S, Christiaens F, Bredoux C et al (2010) A broad-spectrum sunscreen prevents cumulative damage from repeated exposure to sub-erythemal solar ultraviolet radiation representative of temperate latitudes. J Eur Acad Dermatol Venereol 24:219–222

    CAS  PubMed  CrossRef  Google Scholar 

  106. Seite S, Fourtanier A, Moyal D et al (2010) Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review. Br J Dermatol 163:903–914

    CAS  PubMed  CrossRef  Google Scholar 

  107. Seite S, Moyal D, Richard S et al (1998) Mexoryl SX: a broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J Photochem Photobiol B 44:69–76

    CAS  PubMed  CrossRef  Google Scholar 

  108. Seite S, Moyal D, Verdier MP et al (2000) Accumulated p53 protein and UVA protection level of sunscreens. Photodermatol Photoimmunol Photomed 16:3–9

    CAS  PubMed  CrossRef  Google Scholar 

  109. Seite S, Popovic E, Verdier MP et al (2004) Iron chelation can modulate UVA-induced lipid peroxidation and ferritin expression in human reconstructed epidermis. Photodermatol Photoimmunol Photomed 20:47–52

    CAS  PubMed  CrossRef  Google Scholar 

  110. Seite S, Zucchi H, Moyal D et al (2003) Alterations in human epidermal Langerhans cells by ultraviolet radiation: quantitative and morphological study. Br J Dermatol 148:291–299

    CAS  PubMed  CrossRef  Google Scholar 

  111. Seite S, Zucchi H, Septier D et al (2006) Elastin changes during chronological and photo-ageing: the important role of lysozyme. J Eur Acad Dermatol Venereol 20:980–987

    CAS  PubMed  Google Scholar 

  112. Sesto A, Navarro M, Burslem F et al (2002) Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci U S A 99:2965–2970

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Tewari A, Grage MM, Harrison GI et al (2013) UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci 12:95–103

    CAS  PubMed  CrossRef  Google Scholar 

  114. Tewari A, Sarkany RP, Young AR (2012) UVA1 induces cyclobutane pyrimidine dimers but not 6–4 photoproducts in human skin in vivo. J Invest Dermatol 132:394–400

    CAS  PubMed  CrossRef  Google Scholar 

  115. Therrien JP, Rouabhia M, Drobetsky EA et al (1999) The multilayered organization of engineered human skin does not influence the formation of sunlight-induced cyclobutane pyrimidine dimers in cellular DNA. Cancer Res 59:285–289

    CAS  PubMed  Google Scholar 

  116. Todd C, Hewitt SD, Kempenaar J et al (1993) Co-culture of human melanocytes and keratinocytes in a skin equivalent model: effect of ultraviolet radiation. Arch Dermatol Res 285:455–459

    CAS  PubMed  CrossRef  Google Scholar 

  117. Topol BM, Haimes HB, Dubertret L et al (1986) Transfer of melanosomes in a skin equivalent model in vitro. J Invest Dermatol 87:642–647

    CAS  PubMed  CrossRef  Google Scholar 

  118. Vioux-Chagnoleau C, Lejeune F, Sok J et al (2006) Reconstructed human skin: from photodamage to sunscreen photoprotection and anti-aging molecules. J Dermatol Sci Suppl 2:S1–S12

    CAS  Google Scholar 

  119. Wier KA, Fukuyama K, Epstein WL (1971) Nuclear changes during ultraviolet light-induced depression of ribonucleic acid and protein synthesis in human epidermis. Lab Invest 25:451–456

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Bernerd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marionnet, C., Bernerd, F. (2016). Organotypic Models for Evaluating Sunscreens. In: Wang, S., Lim, H. (eds) Principles and Practice of Photoprotection. Adis, Cham. https://doi.org/10.1007/978-3-319-29382-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29382-0_12

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-29381-3

  • Online ISBN: 978-3-319-29382-0

  • eBook Packages: MedicineMedicine (R0)