Skip to main content

Greens and Other Vegetable Foods

  • Chapter
  • First Online:
Chemistry of the Mediterranean Diet

Abstract

This food category is predominant in a Mediterranean diet pattern. The term ‘vegetable food’ includes a highly heterogeneous variety of food items, such as leafy vegetables and analogues, tomato, pumpkin, wild leaf vegetables and weeds, aromatic plants and spices, starchy foods, pulses, fresh fruits and nuts. The nutrient composition taken from two different databases (one in the European Union and the other in the USA) is described and discussed. Some of these foods are consumed as energy sources (such as wheat, rice and potato), as protein sources (pulses) or as a mineral and vitamin supply (greens and fruits). Nevertheless, all have complex compositions supplying a wide variety of nutrients. Given the variety of a large number of factors, from the climate to analytical methodologies, the figures on the composition of food items (obtained from the food databases) should be regarded solely as guidance. Nevertheless, the concentration of the so-called minor components in each food item is highlighted, given the increased awareness of their roles in human health and wellness. In this regard, increasing levels of scientific evidence are being collected on the benefits conveyed by oligosaccharides, dietary fibres, flavonoids (e.g. phytosterols), as well as by many other phytochemicals. In this regard, the European Food Safety Authority granted walnuts a health claim related to cardiovascular health. Many epidemiological studies have correlated a high intake of greens, fruits and other vegetables with lower incidence rates of many non-communicable diseases and lighter body weight. This chapter also makes mention of compounds specific to certain vegetable species and their effects on health. Synergies between several vegetable foods for improved bioavailability and nutraceutical effects of some compounds are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Union of Pure and Applied Chemistry (IUPAC) name: 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one.

  2. 2.

    IUPAC name: methyl N-(1H-indol-3-ylmethyl)carbamodithioate.

  3. 3.

    IUPAC name: methyl N-[(1-methoxyindol-3-yl)methyl]carbamodithioate.

  4. 4.

    IUPAC name: 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one.

  5. 5.

    IUPAC name: (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene.

  6. 6.

    IUPAC name: (6E,8E,10E,12E,14Z,16E,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene.

  7. 7.

    IUPAC name: (6E,8E,10E,12E,14E,16Z,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene.

  8. 8.

    Ethnobotany is the interdisciplinary study of plant–human relationships embedded in a complex and dynamic system of natural and social components.

  9. 9.

    IUPAC name: 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one.

  10. 10.

    IUPAC name: 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one.

  11. 11.

    IUPAC name: [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1E)-3-phenyl-N-sulfooxypropanimidothioate.

  12. 12.

    IUPAC name: 5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one.

  13. 13.

    IUPAC name: 4,6,6-trimethylbicyclo[3.1.1]hept-3-ene.

  14. 14.

    IUPAC name: (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene.

  15. 15.

    IUPAC name: 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one.

  16. 16.

    IUPAC name: 3,7-dimethylocta-1,6-dien-3-ol.

  17. 17.

    IUPAC name: (3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol.

  18. 18.

    IUPAC name: 1-methyl-4-(propan-2-ylidene)cyclohex-1-ene.

  19. 19.

    IUPAC name: (1S,5S,6R)-4,6-dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1.1]hept-3-ene.

  20. 20.

    IUPAC name: bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate.

  21. 21.

    IUPAC name: (4R)-2,6,6-trimethyl-4-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexene-1-carbaldehyde.

  22. 22.

    IUPAC name: 2,6,6-trimethylcyclohexa-1,3-diene-1-carbaldehyde.

  23. 23.

    IUPAC name: 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one.

  24. 24.

    IUPAC name: (2E,4E)-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid.

  25. 25.

    IUPAC name: 3-methylidene-6-(propan-2-yl)cyclohex-1-ene.

  26. 26.

    Report 11215.

  27. 27.

    Identified as ‘alho crú’.

  28. 28.

    IUPAC name: 3-[(prop-2-ene-1-sulfinyl)sulfanyl]prop-1-ene.

  29. 29.

    IUPAC name: 2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one.

  30. 30.

    IUPAC name: (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid.

  31. 31.

    IUPAC name: (1S,3R,4R,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid.

  32. 32.

    IUPAC name: (3R,4S,5R,6R)-2-[[(2R,3S,4S,5R)-6-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol.

  33. 33.

    IUPAC name: (2S,3R,4S,5R,6R)-2-[[(2R,3R,4S,5R,6S)-6-[[(2R,3S,4S,5R,6R)-6-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol.

  34. 34.

    IUPAC name: (2S,3R,4S,5R,6R)-2-[[(2R,3R,4S,5R,6S)-6-[[(2R,3R,4S,5R,6S)-6-[[(2R,3S,4S,5R,6R)-6-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol.

  35. 35.

    IUPAC name: 2-[(2,4-diamino-6-hydroxypyrimidin-5-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol.

  36. 36.

    IUPAC name: dihydroxiphenylalanine ((2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid.

  37. 37.

    IUPAC name: (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol.

  38. 38.

    IUPAC name: (2R,3S)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol.

  39. 39.

    IUPAC name: (3R)-2-(3,5-dihydroxy-4-methoxyphenyl)-8-[(2R,3R,4R)-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-chromen-4-yl]-3,4-dihydro-2H-chromene-3,5,7-triol.

  40. 40.

    IUPAC name: 7-hydroxy-3-(4-hydroxyphenyl)chromen-4-one.

  41. 41.

    IUPAC name: 7-hydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one.

  42. 42.

    IUPAC name: 5,7-dihydroxy-3-(4-methoxyphenyl)chromen-4-one.

  43. 43.

    IUPAC name: 7-hydroxy-3-(4-methoxyphenyl)chromen-4-one.

  44. 44.

    IUPAC name: (2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol.

  45. 45.

    IUPAC name: (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydrochromen-4-one.

  46. 46.

    The figures presented below are a combination of average values of an unknown number of varieties available in Portugal (INSA 2015) and of average values for five varieties commonly found in the USA (USDA 2015).

  47. 47.

    IUPAC name: 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one.

  48. 48.

    IUPAC name: (1-[2,4-dihydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-3-(4-hydroxyphenyl)propan-1-one.

  49. 49.

    The figures presented below are a combination of average values of four different varieties available in Portugal (PortFIR database, from INSA) and of average values for an unreported number of varieties found in the USA (USDA database).

  50. 50.

    IUPAC name: (1R,3R,4S,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid), chlorogenic acid ((1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid.

  51. 51.

    IUPAC name: 2-(4-hydroxyphenyl)chromenylium-3,5,7-triol.

  52. 52.

    IUPAC name: 2-(3,4-dihydroxyphenyl)chromenylium-3,5,7-triol.

  53. 53.

    IUPAC name: as 2-(3,4,5-trihydroxyphenyl)chromenylium-3,5,7-triol.

  54. 54.

    IUPAC name: 2-(4-hydroxy-3-methoxyphenyl)chromenylium-3,5,7-triol.

  55. 55.

    IUPAC name: 2-(3,4-dihydroxy-5-methoxyphenyl)chromenylium-3,5,7-triol.

  56. 56.

    IUPAC name: 2-(4-hydroxy-3,5-dimethoxyphenyl)chromenylium-3,5,7-triol.

  57. 57.

    Figures for fresh figs are a combination of the average values for five different varieties available in Portugal (INSA 2015) and of average values for an unreported number of varieties found in the USA (USDA 2015).

  58. 58.

    IUPAC name: (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid.

  59. 59.

    IUPAC name: (3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol.

  60. 60.

    IUPAC name: (3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol.

  61. 61.

    IUPAC name: (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(Z,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol.

  62. 62.

    IUPAC name: (3S,5S,10S,13R)-17-[(2R,5R)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol.

  63. 63.

    IUPAC name: (E)-5-methylhept-2-en-4-one.

  64. 64.

    IUPAC name: 17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol.

  65. 65.

    IUPAC name: (2S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one.

  66. 66.

    IUPAC name: 3-[(8E,11E)-pentadeca-8,11-dienyl]benzene-1,2-diol.

  67. 67.

    IUPAC name: (1S,2R,4R,5S)-6-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexane-1,2,3,4,5-pentol.

  68. 68.

    IUPAC name: (1S,2S,4S,5R)-6-methoxycyclohexane-1,2,3,4,5 pentol.

References

  • Abbo S, Saranga Y, Peleg Z, Kerem Z, Lev-Yadun S, Gopher A (2009) Reconsidering domestication of legumes versus cereals in the ancient Near East. Q Rev Biol 84(1):29–50. doi:10.1086/596462

    Article  Google Scholar 

  • Abbo S, Rachamim E, Zehavi Y, Zezak I, Lev-Yadun S, Gopher A (2011) Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann Bot 107(8):1399–1404. doi:10.1093/aob/mcr081

    Article  Google Scholar 

  • Abu-Yousif AO, Smith KA, Getsios S, Green KJ, Van Dross RT, Pelling JC (2008) Enhancement of UVB-induced apoptosis by apigenin in human keratinocytes and organotypic keratinocyte cultures. Cancer Res 68(8):3057–3065. doi:10.1158/0008-5472.CAN-07-2763

    Article  Google Scholar 

  • Adom KK, Sorrells ME, Liu RH (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem 53(6):2297–2306. doi:10.1021/jf048456d

    Article  Google Scholar 

  • Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD (2014) Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5(4):404–417. doi:10.3945/an.113.005603

    Article  Google Scholar 

  • Al-Khaldi S (2012) Phytohaemagglutinin (kidney bean lectin). In: Lampel KA, Al-Khaldi S, Cahill SM (eds) Bug book, foodborne pathogenic microorganisms and natural toxins, 2nd edn. Food and Drug Administration, Silver Spring

    Google Scholar 

  • Allahghadri T, Rasooli I, Owlia P, Nadooshan MJ, Ghazanfari T, Taghizadeh M, Astaneh SDA (2010) Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J Food Sci 75(2):H54–H61. doi:10.1111/j.1750-3841.2009.01467.x

    Article  Google Scholar 

  • Anonymous (2011) Castanea sativa Mill. Flora of Pakistan, http://www.tropicos.org/Name/13100366?projectid=32. Accessed 5 Nov 2015

  • Apaydin H, Ertan S, Ozekmekçi S (2000) Broad bean (Vicia faba)-a natural source of L-dopa—prolongs ‘on’ periods in patients with Parkinson’s disease who have ‘on-off’ fluctuations. Mov Disord 15(1):164–166. doi:10.1002/1531-8257(200001)15:1<164::AID-MDS1028>3.0.CO;2-E

    Article  Google Scholar 

  • Banel DK, Hu FB (2009) Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr 90(1):56–63. doi:10.3945/ajcn.2009.27457

    Article  Google Scholar 

  • Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA (2008) Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem 107(3):1106–1113. doi:10.1016/j.foodchem.2007.09.030

    Article  Google Scholar 

  • Barros AIRNA, Nunes FM, Gonçalves B, Bennett RN, Silva AP (2011) Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem 128(1):165–172. doi:10.1016/j.foodchem.2011.03.013

    Article  Google Scholar 

  • Bentley AR, Kritchevsky SB, Harris TB, Holvoet P, Jensen RL, Newman AB, Lee JS, Yende S, Bauer D, Cassano PA (2012) Dietary antioxidants and forced expiratory volume in 1 s decline: the Health, Aging and Body Composition study. Eur Respir J 39(4):979–984. doi:10.1183/09031936.00190010

    Article  Google Scholar 

  • Bettaieb I, Bourgou S, Sriti J, Msaada K, Limam F, Marzouk B (2011) Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: a comparative study. J Sci Food Agric 91:2100–2107

    Article  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Høiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151(12):3873–3880. doi:10.1099/mic.0.27955-0

    Article  Google Scholar 

  • Borlinghaus J, Albrecht F, Gruhlke MCH, Nwachukwu ID, Slusarenko AJ (2014) Allicin: chemistry and biological properties. Molecules 19(8):12591–12618. doi:10.3390/molecules190812591

    Article  Google Scholar 

  • Brewster JL (1994) Onions and other vegetable alliums. CAB, Wallingford

    Google Scholar 

  • Bucolo C, Leggio GM, Drago F, Salomone S (2012) Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem Pharmacol 84(1):88–92. doi:10.1016/j.bcp.2012.03.019

    Article  Google Scholar 

  • Burbano C, Cuadrado C, Muzquiz M, Cubero JI (1995) Variation of favism-inducing factors (vicine, convicine and L-DOPA) during pod development in Vicia faba L. Plant Foods Hum Nutr 47(3):265–275. doi:10.1007/BF01088335

    Article  Google Scholar 

  • Burdock GA, Carabin IG (2009) Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol 47(1):22–34. doi:10.1016/j.fct.2008.11.006

    Article  Google Scholar 

  • Byun S, Lee KW, Jung SK, Lee EJ, Hwang MK, Lim SH, Bode AM, Lee HJ, Dong Z (2010) Luteolin inhibits protein kinase cε and c-src activities and UVB-induced skin cancer. Cancer Res 70(6):2415–2423. doi:10.1158/0008-5472

    Article  Google Scholar 

  • Carvalho AM, Morales R (2005) Persistence of wild food and wild medicinal plant knowledge in a northeastern region of Portugal. In: Santayana MP, Pieroni A, Puri RK (eds) The New Europe: people, health and wild plant resources. Berghahn, Oxford

    Google Scholar 

  • Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA (2011) Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J Exp Bot 62:4345–4354. doi:10.1093/jxb/err150

    Article  Google Scholar 

  • Chan JY, Yuen AC, Chan RY, Chan SW (2013) A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother Res 27:637–646

    Article  Google Scholar 

  • Chatterjee S, Nöldner M, Schötz K (2006) Use of rutin and isorhamnetin for treating depressive states and depression and other emotion disorders. US Patent 20060198914 A14, 7 Sept 2006

    Google Scholar 

  • Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81(1 Suppl):223S–2239S

    Google Scholar 

  • Chiang CT, Way TD, Lin JK (2007) Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21WAF1/CIP1 expression with rapamycin. Mol Cancer Ther 6(7):2127–2138. doi:10.1158/1535-7163.MCT-07-0107

    Article  Google Scholar 

  • Colle IJP, Lemmens L, Buggenhout SV, Van Loey AM, Hendrickx ME, Tian D, McIntee EJ, Hecht SS, Chung F-L (2013) Modeling lycopene degradation and isomerization in the presence of lipids. Food Bioprocess Technol 6(4):909–918. doi:10.1007/s11947-011-0714-4

    Article  Google Scholar 

  • Conaway CC, Wang C-X, Pittman B, Yang Y-M, Schwartz JE (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65(18):8548–8557. doi:10.1158/0008-5472.CAN-05-0237

    Article  Google Scholar 

  • Courteau J (2015a) Malus domestica. Encyclopedia of Life. Available at http://eol.org/pages/629094/details. Accessed 5 Nov 2015

  • Courteau J (2015b) Phoenix dactylifera. Encyclopedia of Life. Available http://eol.org/pages/1135088/details. Accessed 5 Nov 2015

  • Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol Biol 73(6):587–603. doi:10.1007/s11103-010-9636-1

    Article  Google Scholar 

  • Dang NT, Mukai R, Yoshida K, Ashida H (2010) D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci Biotechnol Biochem 74(5):1062–1067. doi:10.1271/bbb.90963

    Article  Google Scholar 

  • Destaillats F, Cruz-Hernandez C, Giuffrida F, Dionisi F, Mostin M, Verstegen G (2011) Identification of the botanical origin of commercial pine nuts responsible for dysgeusia by gas-liquid chromatography analysis of fatty acid profile. J Toxicol 2011:316789. doi:10.1155/2011/316789

    Google Scholar 

  • Eaton DL, Schaupp CM (2014) Of mice, rats, and men: could Nrf2 activation protect against aflatoxin heptocarcinogenesis in Humans? Cancer Prev Res 7(7):653–657. doi:10.1158/1940-6207.CAPR-14-0119

    Article  Google Scholar 

  • Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons D, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137(11):2405–2411

    Google Scholar 

  • EFSA (2011) Scientific opinion on the substantiation of health claims related to walnuts and maintenance of normal blood LDL-cholesterol concentrations (ID 1156, 1158) and improvement of endothelium-dependent vasodilation (ID 1155, 1157) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(4):2074–2093. doi:10.2903/j.efsa.2011.2074

    Article  Google Scholar 

  • EFSA (2015) Acrylamide. European Food Safety Authority, Parma. Available at http://www.efsa.europa.eu/en/topics/topic/acrylamide.htm. Accessed 15 Feb 2015

  • EOL (2015a) Allium sativum. Available at http://eol.org/pages/1084926/details. Accessed 5 Nov 2015

  • EOL (2015b) Vitis vinifera. Available at http://eol.org/pages/582304/details. Accessed 5 Nov 2015

  • Ercisli S, Tosun M, Karlidag H, Dzubur A, Hadziabulic S, Aliman Y (2012) Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey. Plant Foods Hum Nutr 67(3):271–276. doi:10.1007/s11130-012-0292-2

    Article  Google Scholar 

  • Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, Schouten HJ, Putterill J, Allan AC, Hellens RP (2014) Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 144(2):146–154. doi:10.3945/jn.113.182659

    Article  Google Scholar 

  • FAO (2015) Statistics Division. Trade. http://faostat3.fao.org/browse/T/. Accessed 16 Mar 2015

  • FDA (2003) Qualified Health Claims: Letter of Enforcement Discretion—Nuts and Coronary Heart Disease (Docket No 02P-0505). Food and Drug Administration, Silver Spring. Available at http://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072926.htm. Accessed 5 Nov 2015

  • FDA (2014a) FDA Poisonous plant database. http://www.accessdata.fda.gov/scripts/plantox/detail.cfm?id=1364. Accessed 10 Oct 2014

  • FDA (2014b) FDA Poisonous plant database. http://www.accessdata.fda.gov/scripts/plantox/detail.cfm?id=18235. Accessed 10 Oct 2014

  • Felgines C, Talavéra S, Gonthier MP, Texier O, Scalbert A, Lamaison JL, Rémésy C (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133(5):1296–1301

    Google Scholar 

  • Fernandes I, Nave F, Goncalves R, Freitas V, Mateus N (2012) On the bioavailability of flavanols and anthocyanins: flavanol-anthocyanin dimers. Food Chem 135(2):812–818. doi:10.1016/j.foodchem.2012.05.037

    Article  Google Scholar 

  • Fernández-Sánchez L, Lax P, Esquiva G, Martín-Nieto J, Pinilla I, Cuenca N (2012) Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats. PLoS One 7(8), e43074

    Article  Google Scholar 

  • Fielding JM, Rowley KG, Cooper P, O’Dea K (2005) Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pac J Clin Nutr 14(2):131–136

    Google Scholar 

  • Firouzi R, Shekarforoush SS, Nazer AH, Borumand Z, Jooyandeh AR (2007) Effects of essential oils of oregano and nutmeg on growth and survival of Yersinia enterocolitica and Listeria monocytogenes in barbecued chicken. J Food Prot 70(11):2626–2630

    Google Scholar 

  • Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24(2):395–414. doi:10.1105/tpc.111.093120

    Article  Google Scholar 

  • Forester SC, Lambert JD (2014) Synergistic inhibition of lung cancer cell lines by (-)-epigallocatechin-3-gallate in combination with clinically used nitrocatechol inhibitors of catechol-O-methyltransferase. Carcinogenesis 35(2):365–372. doi:10.1093/carcin/bgt347

    Article  Google Scholar 

  • Forester SC, Choy YY, Waterhouse AL, Oteiza PI (2014) The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinog 53(6):432–439. doi:10.1002/mc.21974

    Article  Google Scholar 

  • Foster RH, Hardy G, Alany RG (2010) Borage oil in the treatment of atopic dermatitis. Nutrition 26(7–8):708–718. doi:10.1016/j.nut.2009.10.014

    Article  Google Scholar 

  • Franzen CA, Amargo E, Todorović V, DEsai BV, Huda S, Mirzoeva S, Chiu K, Grzybowski BA, Chew T-L, Green KJ, Pelling JC (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res 2:830–841

    Article  Google Scholar 

  • Gajendragadkar PR, Hubsch A, Maki-Petaja KM, Serg M, Wilkinson IB, Cheriyan J (2014) Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS One 9(6):e99070. doi:10.1371/journal.pone.0099070

    Article  Google Scholar 

  • García-Alonso A, Goñi I (2000) Effect of processing on potato starch: in vitro availability and glycaemic index. Nahrung 44:19–22

    Article  Google Scholar 

  • Garland S (1979) The complete book of herbs & spices: an illustrated guide to growing and using culinary, aromatic, cosmetic and medicinal plants. Frances Lincoln, London

    Google Scholar 

  • Gossell-Williams M, Davis A, O’Connor N (2006) Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-Dawley rats by pumpkin seed oil. J Med Food 9:284–286

    Article  Google Scholar 

  • Graf BA, Mullen W, Caldwell ST, Hartley RC, Duthie GG, Lean MEJ, Crozier A, Edwards CA (2005) Disposition and metabolism of [2-14C]Quercetin-4′-glucoside in rats. Drug Metab Dispos 33(7):1036–1043. doi:10.1124/dmd.104.002691

    Article  Google Scholar 

  • Graziani G, D’Argenio G, Tuccillo C, Loguercio C, Ritieni C, Morisco AF, Blanco CDV, Fogliano V, Romano M (2005) Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 54(2):193–200. doi:10.1136/gut.2004.046292

    Article  Google Scholar 

  • Hartmann D, Thürmann PA, Spitzer V, Schalch W, Manner B, Cohn W (2004) Plasma kinetics of zeaxanthin and 3′-dehydro-lutein after multiple oral doses of synthetic zeaxanthin. Am J Clin Nutr 79(3):410–417

    Google Scholar 

  • Hernández-Mijares A, Bañuls C, Peris JE, Monzó N, Jover A, Bellod L, Victor VM, Rocha M (2013) A single acute dose of pinitol from a naturally-occurring food ingredient decreases hyperglycaemia and circulating insulin levels in healthy subjects. Food Chem 141:1267–1272

    Article  Google Scholar 

  • Herrmann M, Joppe H, Schmaus G (2002) Thesinine-4′-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry 60(4):399–402. doi:10.1016/S0031-9422(02)00069-9

    Article  Google Scholar 

  • Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, Giles GG (2007) Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 86(1):189–197

    Google Scholar 

  • Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Sakai T (2006) The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 5(4):945–951. doi:10.1158/1535-7163.MCT-05-0431

    Article  Google Scholar 

  • Huang WC, Chang WT, Wu SJ, Xu PY, Ting NC, Liou CJ (2013) Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures. Mol Nutr Food Res 57(10):1803–1813. doi:10.1002/mnfr.201300001

    Google Scholar 

  • Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M (2013) Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One 8(1):e54318. doi:10.1371/journal.pone.0054318

    Article  Google Scholar 

  • INSA (2015) Tabela da Composição de Alimentos (TCA). http://www.insa.pt/sites/INSA/Portugues/AreasCientificas/AlimentNutricao/AplicacoesOnline/TabelaAlimentos/PesquisaOnline/Paginas/PorPalavraChave.aspx. Accessed 5 Nov 2015

  • Jakobeka L, Šerugaa M, Voćab S, Šindrakc Z, Dobričevićb N (2009) Flavonol and phenolic acid composition of sweet cherries (cv. Lapins) produced on six different vegetative rootstocks. Sci Hort 123(1):23–28. doi:10.1016/j.scienta.2009.07.012

    Article  Google Scholar 

  • Jandér KC, Herre EA (2010) Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc Biol Sci 277(1687):1481–1488. doi:10.1098/rspb.2009.2157

    Article  Google Scholar 

  • Jeyabal PV, Syed MB, Venkataraman M, Sambandham JK, Sakthisekaran D (2005) Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog 44(1):11–20. doi:10.1002/mc.20115

    Article  Google Scholar 

  • Jung SK, Lee KW, Byun S, Lee EJ, Kim J-E, Bode AM, Dong Z, Lee HJ (2010) Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis 31(5):911–917. doi:10.1093/carcin/bgp221

    Article  Google Scholar 

  • Jutooru I, Guthrie AS, Chadalapaka G, Pathi S, Kim K, Burghardt R, Jin UH, Safe S (2014) Mechanism of action of phenethylisothiocyanate and other reactive oxygen species-inducing anticancer agents. Mol Cell Biol 34(13):2382–2395. doi:10.1128/MCB.01602-13

    Article  Google Scholar 

  • Kavitha K, Swamy MJ (2006) Thermodynamic studies on the interaction of water-soluble porphyrins with the glucose/mannose-specific lectin from garden pea (Pisum sativum). IUBMB Life 58(12):720–730. doi:10.1080/15216540601069761

    Article  Google Scholar 

  • Kim HJ, Park KS, Lee SK, Min KW, Han KA, Kim YK, Ku BJ (2012) Effects of pinitol on glycemic control, insulin resistance and adipocytokine levels in patients with type 2 Diabetes mellitus. Ann Nutr Metab 60(1):1–5. doi:10.1159/000334834

    Article  Google Scholar 

  • Kitsteiner J (2011) Permaculture plants: walnut trees. temperate climate permaculture, http://tcpermaculture.blogspot.it/2011/10/permaculture-plants-walnut-trees.html. Accessed 5 Nov 2015

  • Kohler T, Weidenmaier C, Peschel A (2009) Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191(13):4482–4484. doi:10.1128/JB.00221-09

    Article  Google Scholar 

  • Kubo I, Chen QX, Nihei K, Calderon JS, Cespedes CL (2003) Tyrosinase inhibition kinetics of anisic acid. Z Naturforsch C58(9–10):713–718

    Google Scholar 

  • Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139(4):646–652. doi:10.3945/jn.108.102616

    Article  Google Scholar 

  • Ladizinsky G (1999) On the origin of almond. Gen Res Crop Evol 46(2):143–147. doi:10.1023/A:1008690409554

    Article  Google Scholar 

  • Lee KW, Kang NJ, Rogozin EA, Kim H-G, Cho YY, Bode AM, Lee HJ, Surh Y-J, Bowden GT, Dong Z (2007) Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28(9):1918–1927. doi:10.1093/carcin/bgm110

    Article  Google Scholar 

  • Lee JS, Kim DJ, Kang YH, Kim TW, Kim KK, Choe M (2014) Antiatherosclerosis effect of pine nut oil in HCHF diet-fed rats. FASEB J 28(1 suppl):959.12

    Google Scholar 

  • Lekli I, Ray D, Das DK (2010) Longevity nutrients resveratrol, wines and grapes. Genes Nutr 5(1):55–60. doi:10.1007/s12263-009-0145-2

    Article  Google Scholar 

  • Li HH, Hao RL, Wu SS, Guo PC, Chen CJ, Pan LP, Ni H (2011) Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem Pharmacol 82:701–712

    Article  Google Scholar 

  • Li H, Zhu F, Chen H, Cheng KW, Zykova T, Oi N, Lubet RA, Bode AM, Wang M, Dong Z (2014) 6-C-(E-phenylethenyl)-naringenin suppresses colorectal cancer growth by inhibiting cyclooxygenase-1. Cancer Res 74:43–252

    Google Scholar 

  • Lin X, Racette SB, Ma L, Wallendorf M, Spearie CA, Ostlund RE Jr (2015) Plasma biomarker of dietary phytosterol intake. PLoS One 10(2):e0116912. doi:10.1371/journal.pone.0116912

    Article  Google Scholar 

  • Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin. Anticancer Activity Cancer Res 66:4410–4418

    Google Scholar 

  • Lynett PT, Butts K, Vaidya V, Garrett GE, Pratt DA (2011) The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates. Org Biomol Chem 9(9):3320–3330. doi:10.1039/c1ob05192j

    Article  Google Scholar 

  • Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI (2004) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 18(1):167–169. Epub 2003 Nov 20

    Google Scholar 

  • Madden SMM, Garrioch CF, Holub BJ (2009) Direct diet quantification indicates low intakes of (n-3) fatty acids in children 4 to 8 years old. J Nutr 139(3):528–532. doi:10.3945/jn.108.100628

    Article  Google Scholar 

  • Maguire LS, O’Sullivan SM, Galvin K, O’Connor TP, O’Brien NM (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55(3):171–178. doi:10.1080/09637480410001725175

    Article  Google Scholar 

  • Mahadov S, Green PHR (2011) Celiac disease: a challenge for all physicians. Gastroenterol Hepatol 7(8):554–556

    Google Scholar 

  • Mares JA, LaRowe TL, Snodderly DM, Moeller SM, Gruber MJ, Klein ML (2006) Predictors of optical density of lutein and zeaxanthin in retinas of older women in the carotenoids in age-related eye disease study, an ancillary study of the Women’s Health Initiative. Am J Clin Nutr 84(5):1107–1122

    Google Scholar 

  • Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132(3):518S–524S

    Google Scholar 

  • Martinotti S, Ranzato E, Parodi M, Vitale M, Burlando B (2014) Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells. Toxicol Appl Pharmacol 274(1):35–41. doi:10.1016/j.taap.2013.10.025

    Article  Google Scholar 

  • McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE (2010) Pulse consumption, satiety, and weight management. Adv Nutr 1:17–30. doi:10.3945/an.110.1006

    Article  Google Scholar 

  • McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95(2):454–464. doi:10.3945/ajcn.111.016634

    Article  Google Scholar 

  • Miura T, Chiba M, Kasai K, Nozaka H, Nakamura T, Shoji T, Kanda T, Ohtake Y, Sato T (2008) Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. Carcinogenesis 29(3):585–593

    Article  Google Scholar 

  • Moon SH, Lee JH, Kim KT, Park YS, Nah SY, Ahn DU, Paik HD (2013) Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains. Int J Environ Res Public Health 10(11):5459–5469. doi:10.3390/ijerph10115459

    Article  Google Scholar 

  • Morton JF (1987) Orange. In: Morton JF (ed) Fruits of warm climates. Julia F. Morton, Miami

    Google Scholar 

  • Nazimuddin S, Qaiser M (1982) Vitaceae. Flora Pak 147:1–20

    Google Scholar 

  • NCBI (2015a) PubChem compound Database. CID 445354. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/445354. Accessed 5 Nov 2015

  • NCBI (2015b) PubChem compound Database. CID 3035211. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/3035211. Accessed 5 Nov 2015

  • NCBI (2015c) PubChem compound Database. CID 446925. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/446925. Accessed 5 Nov 2015

  • NCBI (2015d) PubChem compound Database. CID 1203. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/1203. Accessed 5 Nov 2015

  • NCBI (2015e) PubChem compound Database. CID 72281. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/72281. Accessed 5 Nov 2015

  • NCBI (2015f) PubChem compound Database. CID 5362588. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/5362588. Accessed 5 Nov 2015

  • NCBI (2015g) PubChem compound Database. CID 5281862. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/5281862. Accessed 5 Nov 2015

  • NCBI (2015h) PubChem compound Database. CID 892. National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/compound/892. Accessed 5 Nov 2015

  • Nishimura M, Ohkawara T, Sato H, Takeda H, Nishihira J (2014) Pumpkin seed oil extracted from Cucurbita maxima improves urinary disorder in human overactive bladder. J Tradit Complement Med 4(1):72–74. doi:10.4103/2225-4110.124355

    Article  Google Scholar 

  • NLM (2015) TOXNET—network of databases on toxicology, hazardous chemicals and environmental health. U.S. National Library of Medicine. Available at http://toxnet.nlm.nih.gov/. Accessed 5 Nov 2015

  • Noda S, Tanabe S, Suzuki T (2013) Naringenin enhances intestinal barrier function through the expression and cytoskeletal association of tight junction proteins in Caco-2 cells. Mol Nutr Food Res 57(11):2019–2028. doi:10.1002/mnfr.201300045

    Article  Google Scholar 

  • O’Byrne SM, Blaner WS (2013) Retinol and retinyl esters: biochemistry and physiology. Thematic review series: fat-soluble vitamins: vitamin A. J Lipid Res 54(7):1731–1743. doi:10.1194/jlr.R037648

    Article  Google Scholar 

  • Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, Shoyama Y, Toda A, Eyanagi R, Soeda S (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta 1770(4):578–584. doi:10.1016/j.bbagen.2006.11.012

    Article  Google Scholar 

  • Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM (2015) Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol 16(3):245–251. doi:10.2174/1389201015666141202110216

    Article  Google Scholar 

  • Ozkan G, Koyuncu MA (2005) Physical and chemical composition of some walnut (Juglans regia L) genotypes grown in Turkey. Grasas Aceites 56(2):141–146. doi:10.3989/gya.2005.v56.i2.122

    Article  Google Scholar 

  • Pai S, Ghugre PS, Udipi SA (2005) Satiety from rice-based, wheat-based and rice-pulse combination preparations. Appetite 44(3):263–271. doi:10.1016/j.appet.2005.01.004

    Article  Google Scholar 

  • Palaniswamy UR, McAvoy RJ, Bible BB, Stuart JD (2003) Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves. J Agric Food Chem 51(18):5504–5509. doi:10.1021/jf034268w

    Article  Google Scholar 

  • Pataki T, Bak I, Kovacs P, Bagchi D, Das DK, Tosaki A (2002) Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr 75(5):894–899

    Google Scholar 

  • Pedras MS, Montaut S, Suchy M (2004) Phytoalexins from the crucifer rutabaga: structures, synthesis, biosynthesis, and antifungal activity. J Org Chem 69(13):4471–4476. doi:10.1021/jo049648a

    Article  Google Scholar 

  • Pedreschi F, Mariotti MS, Granby K (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 94(1):9–20. doi:10.1002/jsfa.6349

    Article  Google Scholar 

  • Piccaglia R, Marotti M (2001) Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). J Agric Food Chem 49(1):239–244. doi:10.1021/jf000636+

    Article  Google Scholar 

  • Pittaway JK, Robertson IK, Ball MJ (2008) Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc 108(6):1009–1013. doi:10.1016/j.jada.2008.03.009

    Article  Google Scholar 

  • Porres JM, Lopez-Jurado M, Aranda P, Urbano G (2004) Bioavailability of phytic acid-phosphorus and magnesium from lentils (Lens culinaris) in growing rats: influence of thermal treatment and vitamin-mineral supplementation. Nutrition 20(9):794–799. doi:10.1016/j.nut.2004.05.018

    Article  Google Scholar 

  • Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K (2014) Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 210:77–85. doi:10.1016/j.cbi.2013.12.014

    Article  Google Scholar 

  • Psaltopoulou T, Naska A, Orfanos P, Trichopoulos D, Mountokalakis T, Trichopoulou A (2004) Olive oil, the Mediterranean diet, and arterial blood pressure: the Greek European prospective investigation into cancer and nutrition (EPIC) study. Am J Clin Nutr 80(4):1012–1018

    Google Scholar 

  • Qu H, Madl RL, Takemoto DJ, Baybutt RC, Wang W (2005) Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. J Nutr 135(3):598–602

    Google Scholar 

  • Ramprasath VR, Jenkins DJ, Lamarche B, Kendall CW, Faulkner D, Cermakova L, Couture P, Ireland C, Abdulnour S, Patel D, Bashyam B, Srichaikul K, de Souza RJ, Vidgen E, Josse RG, Leiter LA, Connelly PW, Frohlich J, Jones PJ (2014) Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr J 13:101. doi:10.1186/1475-2891-13-101

    Article  Google Scholar 

  • Ramya KB, Thaakur S (2007) Herbs containing L-Dopa: an update. Anc Sci Life 27(1):50–55

    Google Scholar 

  • Rivera D, Obón C, Heinrich M, Inocencio C, Verdea A, Fajardo J (2006) Gathered Mediterranean food plants—ethnobotanical investigations and historical development. In: Heinrich M, Müller WE, Galli C (eds) Local Mediterranean food plants and nutraceuticals. Forum Nutr 59:18–74

    Article  Google Scholar 

  • Romeo R, Sangiovanni A, Iavarone M, Vavassori S, Della Corte C, Colombo M (2010) Diagnostic value of Lens culinaris agglutinin isoform 3 fraction (AFP-L3 %) and des-gamma-carboxy prothrombin (DCP) for the diagnosis of hepatocellular carcinoma in cirrhotic patients. ASCO Meet Abstr 28:4119

    Google Scholar 

  • Roux KH, Teuber SS, Sathe SK (2003) Tree nut allergens. Int Arch Allergy Immunol 131(4):234–244. doi:10.1159/000072135

    Article  Google Scholar 

  • Ruiz-Aceituno L, Ramos L, Martinez-Castro I, Sanz ML (2012) Low molecular weight carbohydrates in pine nuts from Pinus pinea L. J Agric Food Chem 60(19):4957–4959. doi:10.1021/jf2048959

    Article  Google Scholar 

  • Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM (2013) Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals—a review. Phytother Res 27(10):1439–1456. doi:10.1002/ptr.4897

    Google Scholar 

  • Samarghandian S, Borji A (2014) Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res 6:99–107

    Article  Google Scholar 

  • Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends Food Sci Technol 16(9):416–422. doi:10.1016/j.tifs.2005.03.018

    Article  Google Scholar 

  • Schonewille M, Brufau G, Shiri-Sverdlov R, Groen AK, Plat J (2014) Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. J Lipid Res 55(12):2554–2561. doi:10.1194/jlr.M052407

    Article  Google Scholar 

  • Schwarz FP, Puri KD, Bhat RG, Surolia A (1993) Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem 268:7668–7677

    Google Scholar 

  • Serra AT, Rocha J, Sepodes B, Matias AA, Feliciano RP, Carvalho A, Bronze MR, Duarte CM, Figueira ME (2012) Evaluation of cardiovascular protective effect of different apple varieties—correlation of response with composition. Food Chem 135(4):2378–2386. doi:10.1016/j.foodchem.2012.07.067

    Article  Google Scholar 

  • Seymour EM, Ou B (2011) Phytochemical and diverse antioxidant capacity profile of whole tart cherries (Prunus cerasus). FASEB J 25(meeting abstract supplement):773.14

    Google Scholar 

  • Shereen S (2007) Peas, nutrition. About.com, www.about.com

  • Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553. doi:10.1093/jxb/erp058

    Article  Google Scholar 

  • Shi J, Le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Biotechnol 20(4):293–334. doi:10.1080/07388550091144212

    Article  Google Scholar 

  • Shi R, Huang Q, Zhu X, Ong Y-B, Zhao B, Lu J, Ong C-N, Shen H-M (2007) Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol Cancer Ther 6(4):1338–1347. doi:10.1158/1535-7163.MCT-06-0638

    Article  Google Scholar 

  • Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH (2014) Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 34(2):106–115. doi:10.1016/j.nutres.2013.12.005

    Article  Google Scholar 

  • Siegelin MD, Reuss DE, Habel A, Herold-Mende C, von Deimling A (2008) The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol Cancer Ther 7(11):3566–3574. doi:10.1158/1535-7163.MCT-08-0236

    Article  Google Scholar 

  • Silva WS, Harney JW, Kim BW, Li J, Bianco SDC, Crescenzi A, Christoffolete MA, Huang SA, Bianco AC (2007) The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes 56(3):767–776. doi:10.2337/db06-1488

    Article  Google Scholar 

  • Silva F, Ferreira S, Queiroz J, Domingues FC (2011) Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 60(Pt10):1479–1486. doi:10.1099/jmm.0.034157-0

    Article  Google Scholar 

  • Silva N, Alves S, Gonçalves A, Amaral JS, Poeta P (2013) Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria. Food Sci Technol Int 19(6):503–510. doi:10.1177/1082013212442198

    Article  Google Scholar 

  • Singh N, Jabeen T, Pal A, Sharma S, Perbandt M, Betzel C, Singh TP (2006) Crystal structures of the complexes of a group IIA phospholipase A2 with two natural anti-inflammatory agents, anisic acid, and atropine reveal a similar mode of binding. Proteins 64(1):89–100. doi:10.1002/prot.20970

    Article  Google Scholar 

  • Slimestad R, Fossen T, Vågen IM (2007) Onions: a source of unique dietary flavonoids. J Agric Food Chem 55(25):10067–10080. doi:10.1021/jf0712503

    Article  Google Scholar 

  • Solomon A, Golubowicz S, Yablowicz Z, Bergman M, Grossman S, Altman A, Kerem Z, Flaishman MA (2010a) EPR studies of O(2)(*-), OH, and (1)O(2) scavenging and prevention of glutathione depletion in fibroblast cells by cyanidin-3-rhamnoglucoside isolated from fig (Ficus carica L.) fruits. J Agric Food Chem 58(12):7158–7165. doi:10.1021/jf100153z

    Article  Google Scholar 

  • Solomon A, Golubowicz S, Yablowicz Z, Bergman M, Grossman S, Altman A, Kerem Z, Flaishman MA (2010b) Protection of fibroblasts (NIH-3T3) against oxidative damage by cyanidin-3-rhamnoglucoside isolated from fig fruits (Ficus carica L.). J Agric Food Chem 58(11):6660–6665. doi:10.1021/jf100122a

    Article  Google Scholar 

  • Sowbhagyaa HB (2013) Chemistry, technology, and nutraceutical functions of cumin (Cuminum cyminum L). Crit Rev Food Sci Nutr 53:1–10

    Article  Google Scholar 

  • Suzuki T, Tanabe S, Hara H (2011) Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells. J Nutr 141(1):87–94. doi:10.3945/jn.110.125633

    Article  Google Scholar 

  • Tagashira T, Choshi T, Hibino S, Kamishikiryou J, Sugihara N (2012) Influence of gallate and pyrogallol moieties on the intestinal absorption of (−)-epicatechin and (−)-epicatechin gallate. J Food Sci 77(10):H208–H215. doi:10.1111/j.1750-3841.2012.02902.x

    Article  Google Scholar 

  • Tang L, Jin T, Zeng X, Wang J-S (2005) Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in BALB/c nude mice. J Nutr 135(2):287–290

    Google Scholar 

  • Tang N-Y, Huang Y-T, Yu C-S, Ko Y-C, Wu S-H, Ji B-C, Yang J-C, Yang J-L, Hsia T-C, Chen Y-Y, Chung JG (2011) Phenethyl Isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase- and mitochondria-dependent signaling pathways in human prostate cancer DU 145 cells. Anticancer Res 31:1691–1702

    Google Scholar 

  • Tapsell LC, Gillen LJ, Patch CS, Batterham M, Owen A, Bar M, Kennedy M (2004) Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 Diabetes. Diabetes Care 27(12):2777–2783. doi:10.2337/diacare.27.12.2777

    Article  Google Scholar 

  • Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena MD, Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A, Alonso-Moraga A (2013) Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies. PLoS One 8(2):e56986. doi:10.1371/journal.pone.0056986

    Article  Google Scholar 

  • Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19(5):527–536. doi:10.1093/glycob/cwp016

    Article  Google Scholar 

  • Thavarajah P, Thavarajah D, Vandenberg A (2009) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agric Food Chem 57(19):9044–9049. doi:10.1021/jf901636p

    Article  Google Scholar 

  • Torkin R, Lavoie J-F, Kaplan DR, Yeger H (2005) Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther 4(1):1–11

    Article  Google Scholar 

  • Trumbo PR, Ellwood KC (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 84(5):971–974

    Google Scholar 

  • UN (2013) Resolution adopted by the General Assembly on 20 December 2013. United Nations, General Assembly, Sixty-eighth session, Agenda item 25 Distr.: General, 7 February 2014. United Nations, New York. Available at http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/68/231. Accessed 18 Nov 2015

  • USDA (2015) Agricultural Research Service National Nutrient Database for Standard Reference Release 27, Software v.2.2.4, The National Agricultural Library. http://ndb.nal.usda.gov/ndb/foods. Accessed 5 May 2015

  • Vacillotto G, Favretto D, Seraglia R, Pagiotti R, Traldi P, Mattoli L (2013) A rapid and highly specific method to evaluate the presence of pyrrolizidine alkaloids in Borago officinalis seed oil. Mass Spectrom 48(10):1078–1082. doi:10.1002/jms.3251

    Article  Google Scholar 

  • Vasconcelos MC, Bennett RN, Rosa EA, Ferreira-Cardoso JV (2010) Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. J Sci Food Agric 90(10):1578–1589. doi:10.1002/jsfa.4016

    Article  Google Scholar 

  • Vaughan JG, Geissler CA (1997) The New Oxford book of food plants. Oxford University Press, Oxford

    Google Scholar 

  • Wang Y, Chung SJ, McCullough ML, Song WO, Fernandez ML, Koo SI, Chun OK (2014a) Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. J Nutr 144(7):1067–1074. doi:10.3945/jn.113.184317

    Article  Google Scholar 

  • Wang Y, Stevens VL, Shah R, Peterson JJ, Dwyer JT, Gapstur SM, McCullough ML (2014b) Dietary flavonoid and proanthocyanidin intakes and prostate cancer risk in a prospective cohort of US men. Am J Epidemiol 179(8):974–986. doi:10.1093/aje/kwu006

    Article  Google Scholar 

  • Weng CJ, Yen GC (2012) Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31(1–2):323–351. doi:10.1007/s10555-012-9347-y

    Article  Google Scholar 

  • Williams MT, Hord NG (2005) The role of dietary factors in cancer prevention: beyond fruits and vegetables. Nutr Clin Pract 20(4):451–459. doi:10.1177/0115426505020004451

    Article  Google Scholar 

  • Woo HD, Kim J (2013) Dietary flavonoid intake and risk of stomach and colorectal cancer. World J Gastroenterol 19(7):1011–1019. doi:10.3748/wjg.v19.i7.1011

    Article  Google Scholar 

  • Xu B, Chang SK (2010) Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States. J Agric Food Chem 58:1509–1517

    Article  Google Scholar 

  • Yang Y, Kayan B, Bozer N, Pate B, Baker C, Gizir AM (2007) Terpene degradation and extraction from basil and oregano leaves using subcritical water. J Chromatogr A 1152(1–2):262–267. doi:10.1016/j.chroma.2006.11.037

    Article  Google Scholar 

  • Yang MD, Lai KC, Lai TY, Hsu SC, Kuo CL, Yu CS, Lin ML, Yang JS, Kuo HM, Wu SH, Chung JG (2010) Phenethyl isothiocyanate inhibits migration and invasion of human gastric cancer AGS cells through suppressing MAPK and NF-κB signal pathways. Anticancer Res 30(6):2135–2144

    Google Scholar 

  • Yang JS, Liu CW, Ma YS, Weng SW, Tang NY, Wu SH, Ji BC, Ma CY, Ko YC, Funayama S, Kuo CL (2012) Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo 26(2):971–978

    Google Scholar 

  • Zamora-Ros R, Knaze V, Luján-Barroso L, Romieu I, Scalbert A, Slimani N, Hjartåker A, Engeset D, Skeie G, Overvad K, Bredsdorff L, Tjønneland A, Halkjær J, Key TJ, Khaw KT, Mulligan AA, Winkvist A, Johansson I, Bueno-de-Mesquita HB, Peeters PH, Wallström P, Ericson U, Pala V, de Magistris MS, Polidoro S, Tumino R, Trichopoulou A, Dilis V, Katsoulis M, Huerta JM, Martínez V, Sánchez MJ, Ardanaz E, Amiano P, Teucher B, Grote V, Bendinelli B, Boeing H, Förster J, Touillaud M, Perquier F, Fagherazzi G, Gallo V, Riboli E, González CA (2013) Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 109(8):1498–1507. doi:10.1017/S0007114512003273

    Article  Google Scholar 

  • Zamora-Ros R, Forouhi NG, Sharp SJ, González CA, Buijsse B, Guevara M, van der Schouw YT, Amiano P, Boeing H, Bredsdorff L, Fagherazzi G, Feskens EJ, Franks PW, Grioni S, Katzke V, Key TJ, Khaw KT, Kühn T, Masala G, Mattiello A, Molina-Montes E, Nilsson PM, Overvad K, Perquier F, Redondo ML, Ricceri F, Rolandsson O, Romieu I, Roswall N, Scalbert A, Schulze M, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Touillaud M, Tumino R, van der A DL, van Woudenbergh GJ, Langenberg C, Riboli E, Wareham NJ (2014) Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr 144(3):335–343. doi:10.3945/jn.113.184945

    Article  Google Scholar 

  • Zhang WY, Lee JJ, Kim Y, Kim IS, Han JH, Lee SG, Ahn MJ, Jung SH, Myung CS (2012) Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J Agric Food Chem 60:7652–7658

    Article  Google Scholar 

  • Zhou Q, Yan B, Hu X, Li X-B, Zhang J, Fang J (2009) Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol Cancer Ther 8(6):1684–1691. doi:10.1158/1535-7163.MCT-09-0191

    Article  Google Scholar 

  • Ziesenitz S, Eldridge A, Antoine J-L, Coxam V, Flynn A, Fox K, Gray J, Macdonald I, Maughan R, Samuels F, Sanders T, Tomé D, van Loveren C, Williamson G (2012) Healthy lifestyles diet, physical activity and health. ILSI Europe, International Life Sciences Institute, Belgium. Available at http://www.ilsi.org/Europe/Publications/ILSIcm11-004_Diet08.pdf. Accessed 4 Nov 2015

  • Zou Y, Chang SK, Gu Y, Qian SY (2011) Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J Agric Food Chem 59(6):2268–2276. doi:10.1021/jf104640k

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delgado, A.M., Parisi, S., Vaz Almeida, M.D. (2017). Greens and Other Vegetable Foods. In: Chemistry of the Mediterranean Diet. Springer, Cham. https://doi.org/10.1007/978-3-319-29370-7_5

Download citation

Publish with us

Policies and ethics