Skip to main content

Progress on “Pico” Air Vehicles

  • Chapter
  • First Online:
Robotics Research

Abstract

As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power—whereas such questions have in general been answered for larger aircraft. When developing a flying robot on the scale of a common housefly, all hardware must be developed from scratch as there is nothing “off-the-shelf” which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. This technology void also applies to techniques available for fabrication and assembly of the aeromechanical components: the scale and complexity of the mechanical features requires new ways to design and prototype at scales between macro and MEMS, but with rich topologies and material choices one would expect in designing human-scale vehicles. With these challenges in mind, we present progress in the essential technologies for insect-scale robots, or “pico” air vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Section 220 of the National Defense Authorization Act for Fiscal Year 2001 states that, “It shall be the goal of the Armed Forces to achieve the fielding of unmanned, remotely controlled technology such that… by 2010, one-third of the aircraft in the operational deep strike force aircraft fleet are unmanned” [5].

  2. 2.

    http://www.defense.gov/releases/release.aspx?releaseid=1538.

  3. 3.

    DARPA BAA-06-06.

  4. 4.

    http://www.avinc.com/nano/.

  5. 5.

    http://www.atl.lmco.com/papers/1448.pdf.

  6. 6.

    http://www.draper.com/Documents/explorations_summer2010.pdf.

  7. 7.

    http://www.wowwee.com/en/products/toys/flight/flytech.

  8. 8.

    http://robobees.seas.harvard.edu.

  9. 9.

    For example, Microlution 5100: http://microlution-inc.com/products/5100.php.

  10. 10.

    http://www.teslamotors.com/roadster/specs.

  11. 11.

    SBL02-06H1 from Namiki: http://www.namiki.net/product/dcmotor/pdf/sbl02-06ssd04_01_e.pdf.

  12. 12.

    Note that this does not include drive circuitry, which is also exacerbated at small scales.

  13. 13.

    “Squiggle” motors: http://www.newscaletech.com/squiggle_overview.html.

  14. 14.

    http://www.centeye.com.

  15. 15.

    http://www.memscapinc.com.

  16. 16.

    http://www.mems.sandia.gov/tech-info/summit-v.html.

  17. 17.

    Note that this only refers to storage, not transduction or harvesting.

  18. 18.

    http://www.fullriver.com/.

References

  1. H. Tanaka, K. Hoshino, K. Matsumoto, I. Shimoyama, in IEEE/RSJ International Conference on Intelligent Robots and Systems (Edmonton, Alberta, Canada, 2005)

    Google Scholar 

  2. R. Fearing, K. Chang, M. Dickinson, D. Pick, M. Sitti, J. Yan, in IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  3. R. Fearing, S. Avadhanula, D. Campolo, M. Sitti, J. Yan, R. Wood, in Neurotechnology for Biomimetic Robots (The MIT Press, 2002), pp. 469–480

    Google Scholar 

  4. R. Wood, IEEE Trans. Robot. 24(2) (2008)

    Google Scholar 

  5. National Defense Authorization Act, Fiscal Year 2001 (2000) Public Law 106-398, 106th Congress

    Google Scholar 

  6. M. Keennon, J. Grasmeyer, in AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years (Dayton, OH, 2003)

    Google Scholar 

  7. A. Cox, D. Monopoli, D. Cveticanin, M. Goldfarb, E. Garcia, J. Intell. Mater. Syst. Struct. 13, 611–615 (2002)

    Google Scholar 

  8. R. Dudley, The Biomechanics of Insect Flight: Form, Function and Evolution (Princeton University Press, 1999)

    Google Scholar 

  9. M. Karpelson, J. Whitney, G.Y. Wei, R. Wood, in IEEE/RSJ International Conference on Intelligent Robots and Systems (Taipei, Taiwan, 2010)

    Google Scholar 

  10. W. Trimmer, J. Sens. Actuators 19, 267 (1989)

    Article  Google Scholar 

  11. Avro Canada VZ-9AV Avrocar (2010). http://www.nationalmuseum.af.mil/factsheets/factsheet.asp?id=10856

  12. S. Shen, N. Michael, V. Kumar, in IEEE International Conference on Robotics and Automation (Shanghai, China, 2011)

    Google Scholar 

  13. T. Stirling, D. Floreano, in Proceedings of the 10th International Symposium on Distributed Autonomous Robotics Systems (2010)

    Google Scholar 

  14. S. Avadhanula, R. Wood, D. Campolo, R. Fearing, in IEEE International Conference on Robotics and Automation (Washington, DC, 2002)

    Google Scholar 

  15. R. Wood, in IEEE/RSJ International Conference on Intelligent Robots and Systems (San Diego, CA, 2007)

    Google Scholar 

  16. A. Ennos, J. Exp. Biol. 140, 161 (1988)

    Google Scholar 

  17. A. Ennos, J. Exp. Biol. 140, 137 (1988)

    Google Scholar 

  18. A. Bergou, S. Xu, Z. Wang, J. Fluid Mech. 591, 321 (2007)

    Article  Google Scholar 

  19. S. Combes, T. Daniel, J. Exp. Biol. 206(17), 2989 (2003)

    Article  Google Scholar 

  20. S. Combes, T. Daniel, J. Exp. Biol. 206(17), 2999 (2003)

    Article  Google Scholar 

  21. M. Dickinson, F.O. Lehmann, S. Sane, Science 284, 1954 (1999)

    Article  Google Scholar 

  22. R. Mittal, G. Iaccarino, Ann. Rev. Fluid Mech. 37, 239 (2005)

    Article  MathSciNet  Google Scholar 

  23. C. Ellington, C. van der Berg, A. Willmott, A. Thomas, Nature 384, 626 (1996)

    Article  Google Scholar 

  24. J. Whitney, R. Wood, J. Fluid Mech. 660, 197 (2010)

    Article  MathSciNet  Google Scholar 

  25. H. Tanaka, R. Wood, J. Micromech. Microeng. 20(7) (2010)

    Google Scholar 

  26. J. Shang, S. Combes, B. Finio, R. Wood, Bioinspir. Biomim. 4(036002) (2009)

    Google Scholar 

  27. R. Wood, K.J. Cho, K. Hoffman, J. Smart Mater. Struct. 18(125002) (2009)

    Google Scholar 

  28. H. Tanaka, J. Whitney, R. Wood, J. Integr. Compar. Biol. 51(1), 142 (2011)

    Article  Google Scholar 

  29. W. Tang, T.C. Nguyen, M. Judy, R. Howe, J. Sens. Actuators A: Phys. 21(1–3), 328 (1990)

    Google Scholar 

  30. R. Newnham, A. Dogan, Q. Xu, K. Onitsuka, J. Tressler, S. Yoshikawa, in Proceedings of IEEE Ultrasonics Symposium, vol. 1 (Baltimore, MD, 1993), pp. 509–513

    Google Scholar 

  31. R. Pelrine, P. Sommer-Larsen, R. Kornbluh, R. Heydt, G. Kofod, Q. Pei, P. Gravesen, in Proceedings of International Society for Optical Engineering, vol. 4329 (2001), pp. 335–349

    Google Scholar 

  32. M. Karpelson, G.Y. Wei, R. Wood, in IEEE International Conference on Robotics and Automation (Pasadena, CA, 2008)

    Google Scholar 

  33. J. Yin, B. Jiang, W. Cao, I.E.E.E. Trans, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 285 (2000)

    Article  Google Scholar 

  34. S. Lee, H. Park, K. Kim, Smart Mater. Struct. 14(6), 1363 (2005)

    Article  Google Scholar 

  35. E. Steltz, R. Fearing, in IEEE/RSJ International Conference on Intelligent Robots and Systems (San Diego, CA, 2007)

    Google Scholar 

  36. B. Finio, J. Shang, R. Wood, in IEEE International Conference on Robotics and Automation (Kobe, Japan, 2009), pp. 3449–3456

    Google Scholar 

  37. B. Finio, B. Eum, C. Oland, R. Wood, in IEEE International Conference on Robotics and Automation (St. Louis, MO, 2009)

    Google Scholar 

  38. B. Finio, R. Wood, Bioinspir. Biomim. 5, 045006 (2010)

    Article  Google Scholar 

  39. B. Finio, J. Whitney, R. Wood, in IEEE/RSJ International Conference on Intelligent Robots and Systems (Taipei, Taiwan, 2010)

    Google Scholar 

  40. B. Finio, K. Galloway, R. Wood, in IEEE/RSJ International Conference on Intelligent Robots and Systems (San Francisco, CA, 2011)

    Google Scholar 

  41. R. Wood, S. Avadhanula, E. Steltz, M. Seeman, J. Entwistle, A. Bachrach, G. Barrows, S. Sanders, R. Fearing, Robot. Autom. Mag. 14(2), 82 (2007)

    Article  Google Scholar 

  42. G. Nalbach, J. Comp. Physiol. A 173, 293 (1993)

    Article  Google Scholar 

  43. W. Wu, L. Schenato, R. Wood, R. Fearing, in IEEE International Conference on Robotics and Automation (Taipei, Taiwan, 2003)

    Google Scholar 

  44. N. Pérez-Arancibia, J. Whitney, R. Wood, in American Controls Conference (San Francisco, CA, 2011)

    Google Scholar 

  45. P. Sreetharan, R. Wood, J. Mech. Des. 132(5), 051006 (2010)

    Article  Google Scholar 

  46. K. Petersen, Proc. IEEE 70(5), 420 (1982)

    Article  Google Scholar 

  47. R. Yeh, E. Kruglick, K. Pister, J. Microelectr. Mech. Syst. 5(1), 10 (1996)

    Article  Google Scholar 

  48. B. Donald, C. Levey, C. McGray, I. Paprotny, D. Rus, J. Microelectr. Mech. Syst. 15(1), 1 (2006)

    Article  Google Scholar 

  49. K. Pister, M. Judy, S. Burgett, R. Fearing, J. Sens. Actuators A: Phys. 33, 249 (1992)

    Google Scholar 

  50. R. Wood, S. Avadhanula, R. Sahai, E. Steltz, R. Fearing, J. Mech. Des. 130(5) (2008)

    Google Scholar 

  51. R. Wood, E. Steltz, R. Fearing, J. Sens. Actuators A: Phys. 119(2), 476 (2005)

    Google Scholar 

  52. J. Paik, E. Hawkes, R. Wood, J. Smart Mater. Struct. 19(12), 125014 (2010)

    Article  Google Scholar 

  53. E. Hawkes, B. An, N. Benbernou, H. Tanaka, S. Kim, E. Demaine, D. Rus, R. Wood, Proc. Natl. Acad. Sci. 107(28), 12441 (2010)

    Google Scholar 

  54. M. Tsuchiya, B. Lai, S. Ramanathan, Nat. Nanotechnol. 6(282) (2011)

    Google Scholar 

  55. E. Steltz, M. Seeman, S. Avadhanula, R. Fearing, in IEEE/RSJ International Conference on Intelligent Robots and Systems (Beijing, China, 2006)

    Google Scholar 

  56. D. Campolo, M. Sitti, R. Fearing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(3), 237 (2003)

    Article  Google Scholar 

  57. M. Karpelson, R. Wood, G.Y. Wei, in Symposium on VLSI Circuits (Kyoto, Japan, 2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation (award number CCF-0926148), the Army Research Laboratory (award number W911NF-08-2-0004), the Office of Naval Research (award number N00014-08-1-0919-DOD35CAP), and the Air Force Office of Scientific Research (award number FA9550-09-1-0156-DOD35CAP). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wood, R.J. et al. (2017). Progress on “Pico” Air Vehicles. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics