Skip to main content

A Non Integer Order Model of Frequency Speed Control in AC Motor

  • Conference paper
  • First Online:
Book cover Challenges in Automation, Robotics and Measurement Techniques (ICA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 440))

Included in the following conference series:

Abstract

In the paper new non integer order models for speed control in AC motor are proposed. The models have the form of hybrid transfer functions containing both integer order and non integer order parts. Parameters of models were assigned with the use of least square method. The proposed models were compared to integer order transfer function model with delay identified with the use of MATLAB. Results of experiments show that the proposed hybrid models containing fractional order part and integer order part are comparable in the sense of square cost function to reference integer order model and simultaneously they can be simpler to identify and their computational complexity is smaller than reference integer order model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing (2010)

    Google Scholar 

  2. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer (2011)

    Google Scholar 

  3. Merikh-Bayat, F.: Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing PIλDµ controller. Commun. Nonlinear Sci. Numer. Simulat. 17, 1852–1861 (2012)

    Google Scholar 

  4. Mitkowski, W., Obrączka, A.: Simple identification of fractional differential equation. Solid State Phenom. 180, 331–338 (2012)

    Article  Google Scholar 

  5. Mitkowski, W. Oprzędkiewicz, K.: Application of fractional order transfer functions to modeling of high- order systems. In: 7 IFIP Conference, Klagenfurt, 9–12 Sept 2013

    Google Scholar 

  6. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad. Sci. Tech. Sci. 61(3), 581–587 (2013)

    Google Scholar 

  7. Mitkowski, W.: Finite-dimensional approximations of distributed RC networks. Bull. Pol. Acad. Sci. Tech. Sci. 62(2), 263–269 (2014)

    Google Scholar 

  8. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some Approximations of fractional order operators used in control theory and applications. Fractional Calc. Appl. Anal. 3(3), 231–248 (2000)

    Google Scholar 

  9. Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and their Analytical. Technischen Universität Braunschweig, Doktors Dissertation, pp. 1–224 (2005)

    Google Scholar 

  10. Oprzędkiewicz, K.: A Strejc model-based, semi- fractional (SSF) transfer function model, Automatyka/Automatics; AGH UST 16(2), 145–154 (2012). http://journals.bg.agh.edu.pl/AUTOMAT/2012.16.2/automat.2012.16.2.145.pdf

  11. Krishnan, R.: Electric Motor Drives. Modeling, Analysis and Control. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  12. Leonhard, W.: Control of Electrical Drives. Springer, Berlin (2001)

    Book  Google Scholar 

  13. Trzynadlowski, A.: Control of Induction Motors. Academic Press, San Diego (2000)

    Google Scholar 

  14. Isermann, R., Muenchhof, M.: Identification of Dynamic Systems. An Introduction with Applications. Springer (2011)

    Google Scholar 

  15. Ljung, L., Glad, T.: Modeling of Dynamic Systems. Prentice Hall (1994)

    Google Scholar 

  16. Mańczak, K. Nahorski, Z.: Computer Identification of Dynamic Systems, PWN 1983 (in Polish) (1983)

    Google Scholar 

  17. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. I, 47(1), 25–39 (2000)

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the AGH (Poland)—project no 11.11.120.815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Oprzędkiewicz, K., Kołacz, T. (2016). A Non Integer Order Model of Frequency Speed Control in AC Motor. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29357-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29356-1

  • Online ISBN: 978-3-319-29357-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics