Advertisement

Ocular Permeation Enhancers

  • Nathaniel J. Kim
  • Alon HarrisEmail author
  • Alhasan Elghouche
  • Willy Gama
  • Brent Siesky
Chapter

Abstract

Nanotechnology-based penetration enhancers provide novel mechanisms to improve current drug delivery methodologies. New developments in this field have been shown to overcome previous difficulties of ocular therapeutics like anatomical barriers and filtration mechanisms. Furthermore, nanoparticles exhibit additional benefits as a drug carrier, such as protection of drugs against degradation, biocompatible carrier structures, or reduction of adverse or immunological effects. Penetration enhancers exhibit great promise in ophthalmology. While much of the current research in the field surrounds lipid-based nanotechnologies, other innovative works have expanded the spectrum of ocular drug delivery.

This chapter investigates the most current work in the field of nanotechnology-based ocular penetration enhancers that have laid the foundation for future investigations. In addition to nanoparticle constructs, drug delivery techniques that may be used in conjunction with nanoparticles are also explored.

Keywords

Drug delivery Ocular barrier Penetration enhancer Nanobiomaterials Iontophoresis Implants Microsphere Microneedle 

References

  1. 1.
    Cholkar K et al (2013) Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther 29:106–123PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wagner V et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217PubMedCrossRefGoogle Scholar
  3. 3.
    Institute NN (2012) United States National Nanotechnology Initiative. What it is and how it works. Cited 10 Aug 2012Google Scholar
  4. 4.
    Ghate D, Edelhauser HF (2008) Barriers to glaucoma drug delivery. J Glaucoma 17(2):147–156PubMedCrossRefGoogle Scholar
  5. 5.
    Macha S, Mitra AK, Hughes PM (2003) Overview of ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, Inc., New York, pp 1–12CrossRefGoogle Scholar
  6. 6.
    Stone JL et al (2009) An objective evaluation of eyedrop instillation in patients with glaucoma. Arch Ophthalmol 127:732–736PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta R et al (2012) Evaluating eye drop instillation technique in glaucoma patients. J Glaucoma 21:189–192PubMedCrossRefGoogle Scholar
  8. 8.
    Jager RD et al (2004) Risks of intravitreous injection: a comprehensive review. Retina 24(5):676–698PubMedCrossRefGoogle Scholar
  9. 9.
    Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37:435–457PubMedCrossRefGoogle Scholar
  10. 10.
    Mishima S et al (1966) Determination of tear volume and tear flow. Invest Ophthalmol 5:264–276PubMedGoogle Scholar
  11. 11.
    Patton TF, Francoeur M (1978) Ocular bioavailability and systemic loss of topically applied ophthalmic drugs. Am J Ophthalmol 85:225–229PubMedCrossRefGoogle Scholar
  12. 12.
    Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60:207–225PubMedCrossRefGoogle Scholar
  13. 13.
    Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87:1479–1488PubMedCrossRefGoogle Scholar
  14. 14.
    Green K, Tonjum A (1971) Influence of various agents on corneal permeability. Am J Ophthalmol 72:897–905PubMedCrossRefGoogle Scholar
  15. 15.
    Gasset AR et al (1974) Cytotoxicity of ophthalmic preservatives. Am J Ophthalmol 78:98–105PubMedCrossRefGoogle Scholar
  16. 16.
    Chang SW et al (2000) Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp Eye Res 71:3–10PubMedCrossRefGoogle Scholar
  17. 17.
    Robinson JR (1993) Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 29–57Google Scholar
  18. 18.
    Schoenwald RW (1997) Ocular pharmacokinetics. In: Zimmerman TJ (ed) Textbook of ocular pharmacology. Lippincott-Raven Publishers, Philadelphia, pp 119–138Google Scholar
  19. 19.
    Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5(3):208–220PubMedCrossRefGoogle Scholar
  20. 20.
    Hämäläinen KM et al (1997) Estimation of pore size and porosity of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Control Release 49:97–104CrossRefGoogle Scholar
  21. 21.
    Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52:37–48PubMedCrossRefGoogle Scholar
  22. 22.
    Ambati J et al (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41(5):1186–1191PubMedGoogle Scholar
  23. 23.
    Ahmed I et al (1989) The kinetics of timolol in the rabbit lens: implications for ocular drug delivery. Pharm Res 6(9):772–778PubMedCrossRefGoogle Scholar
  24. 24.
    Sasaki H et al (1999) Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 16(1):85–146PubMedCrossRefGoogle Scholar
  25. 25.
    Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23(5):279–296PubMedCrossRefGoogle Scholar
  26. 26.
    Peyman GA, Bok D (1972) Peroxidase diffusion in the normal and laser-coagulated primate retina. Invest Ophthalmol 11(1):35–45PubMedGoogle Scholar
  27. 27.
    Smith RS, Rudt LA (1975) Ocular vascular and epithelial barriers to microperoxidase. Invest Ophthalmol 14(7):556–560PubMedGoogle Scholar
  28. 28.
    Pederson JE, Green K (1973) Aqueous humor dynamics: experimental studies. Exp Eye Res 15(3):277–297PubMedCrossRefGoogle Scholar
  29. 29.
    Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mishra GP et al (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. doi: 10.1155/2011/863734 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Honda M et al (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 8:495–504. doi: 10.2147/IJN.S30725 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mastrobattista E et al (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 277:27135–27143PubMedCrossRefGoogle Scholar
  33. 33.
    Schnyder A, Huwyler J (2005) Drug transport to brain with targeted liposomes. NeuroRx 2:99–107PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668PubMedCrossRefGoogle Scholar
  35. 35.
    Oku N (1999) Anticancer therapy using glucuronate modified long-circulating liposomes. Adv Drug Deliv Rev 40:63–73PubMedCrossRefGoogle Scholar
  36. 36.
    Sapra P, Tyagi P, Allen TM (2005) Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2(4):369–381PubMedCrossRefGoogle Scholar
  37. 37.
    Honda M et al (2011) Suppression of choroidal neovascularization by intravitreal injection of liposomal SU5416. Arch Ophthalmol 129(3):317–321PubMedCrossRefGoogle Scholar
  38. 38.
    Bochot A et al (2002) Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 43(1):253–259PubMedGoogle Scholar
  39. 39.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822PubMedCrossRefGoogle Scholar
  40. 40.
    Puri A et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lopez-Berestein G et al (1983) Effects of sterols on the therapeutic efficacy of liposomal amphotericin B in murine candidiasis. Cancer Drug Deliv 1(1):37–42PubMedCrossRefGoogle Scholar
  42. 42.
    Oku N, Nojima S, Inoue K (1980) Selective release of non-electrolytes from liposomes upon perturbation of bilayers by temperature change or polyene antibiotics. Biochim Biophys Acta 595(2):277–290PubMedCrossRefGoogle Scholar
  43. 43.
    Klibanov AL et al (1990) Amphipathic poly-ethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237PubMedCrossRefGoogle Scholar
  44. 44.
    Monem AS, Ali FM, Ismail MW (2000) Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm 198(1):29–38PubMedCrossRefGoogle Scholar
  45. 45.
    Davis BM et al (2014) Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 10(8):1575–1584PubMedCrossRefGoogle Scholar
  46. 46.
    Kenis H et al (2004) Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 279:52623–52629PubMedCrossRefGoogle Scholar
  47. 47.
    Ungethüm L et al (2011) Engineered annexin A5 variants have impaired cell entry for molecular imaging of apoptosis using pretargeting strategies. J Biol Chem 286:1903–1910PubMedCrossRefGoogle Scholar
  48. 48.
    Díaz-Llopis M et al (1992) Liposomally-entrapped ganciclovir for the treatment of cytomegalovirus retinitis in AIDS patients. Experimental toxicity and pharmacokinetics, and clinical trial. Doc Ophthalmol 82(4):297–305PubMedCrossRefGoogle Scholar
  49. 49.
    Abrishami M et al (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 29(5):699–703PubMedCrossRefGoogle Scholar
  50. 50.
    Lajavardi L et al (2007) Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal Peptide encapsulated in liposomes. Invest Ophthalmol Vis Sci 48(7):3230–3238PubMedCrossRefGoogle Scholar
  51. 51.
    Moon JW et al (2006) Effect of subconjunctivally injected, liposome-bound, low-molecular-weight heparin on the absorption rate of subconjunctival hemorrhage in rabbits. Invest Ophthalmol Vis Sci 47(9):3968–3974PubMedCrossRefGoogle Scholar
  52. 52.
    Baek SH et al (2009) Subconjunctivally injected, liposome-encapsulated streptokinase enhances the absorption rate of subconjunctival hemorrhages in rabbits. Eur J Pharm Biopharm 72(3):546–551PubMedCrossRefGoogle Scholar
  53. 53.
    Fukushima A et al (2005) Suppression of macrophage infiltration into the conjunctiva by clodronate liposomes in experimental immune-mediated blepharoconjunctivitis. Cell Biol Int 29(4):277–286PubMedCrossRefGoogle Scholar
  54. 54.
    Natarajan JV et al (2012) Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 7:123–131PubMedPubMedCentralGoogle Scholar
  55. 55.
    Carafa M, Santucci E, Lucania G (2002) Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm 231(1):21–32PubMedCrossRefGoogle Scholar
  56. 56.
    Kaur IP et al (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269(1):1–14PubMedCrossRefGoogle Scholar
  57. 57.
    Abdelkader H et al (2011) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100(5):1833–1846PubMedCrossRefGoogle Scholar
  58. 58.
    Saettone MF et al (1996) Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate. A preliminary evaluation. STP Pharma Sci 6:94–98Google Scholar
  59. 59.
    Uchegbu IF, Bowstra JA, Florence AT (1992) Large disk-shaped structures (discomes) in nonionic surfactant vesicle to micelle transitions. J Phys Chem 96(25):10548–10553CrossRefGoogle Scholar
  60. 60.
    Vyas SP et al (1998) Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 53(7):466–469PubMedGoogle Scholar
  61. 61.
    Abdelkader H et al (2010) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100(5):1833–1846CrossRefGoogle Scholar
  62. 62.
    Kaur IP et al (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472PubMedCrossRefGoogle Scholar
  63. 63.
    Maiti S et al (2011) Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. AAPS PharmSciTech 12(2):755–763PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Abdelbary G, El-Gendy N (2008) Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 9(3):740–747PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12:608–620PubMedCrossRefGoogle Scholar
  66. 66.
    Kaur IP, Chhabra S, Aggarwal D (2004) Role of cyclodextrins in opthalmics. Curr Drug Deliv 1(4):351–360PubMedCrossRefGoogle Scholar
  67. 67.
    Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666PubMedCrossRefGoogle Scholar
  68. 68.
    Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang J et al (2008) Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl beta-cyclodextrin to rabbits. J Ocul Pharmacol Ther 24(5):501–506PubMedCrossRefGoogle Scholar
  70. 70.
    Loftsson T, Stefánsson E (1997) Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 23(5):473–481CrossRefGoogle Scholar
  71. 71.
    Halim Mohamed MA, Mahmoud AA (2011) Formulation of indomethacin eye drops via complexation with cyclodextrins. Curr Eye Res 36(3):208–216PubMedCrossRefGoogle Scholar
  72. 72.
    Jansook P et al (2010) yCD/HPyCD mixtures as solubilizer: solid-state characterization and sample dexamethasone eye drop suspension. J Pharm Pharm Sci 13(3):336–350PubMedCrossRefGoogle Scholar
  73. 73.
    Moya-Ortega MD et al (2013) Dexamethasone eye drops containing γ-cyclodextrin-based nanogels. Int J Pharm 441(1–2):507–515PubMedCrossRefGoogle Scholar
  74. 74.
    Morrison PW, Connon CJ, Khutoryanskiy VV (2013) Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm 10(2):756–762PubMedCrossRefGoogle Scholar
  75. 75.
    Hippalgaonkar K et al (2011) Enhanced solubility, stability, and transcorneal permeability of delta-8-tetrahydrocannabinol in the presence of cyclodextrins. AAPS PharmSciTech 12(2):723–731PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang H et al (2013) Molecular modeling-based inclusion mechanism and stability studies of doxycycline and hydroxypropyl-β-cyclodextrin complex for ophthalmic delivery. AAPS PharmSciTech 14(1):10–18PubMedCrossRefGoogle Scholar
  77. 77.
    Yavuz B, Pehlivan SB, Unlü N (2013) Dendrimeric systems and their applications in ocular drug delivery. Sci World J 2013Google Scholar
  78. 78.
    Cheng YY et al (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97(1):123–143PubMedCrossRefGoogle Scholar
  79. 79.
    Gillies ER, Fréchet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43PubMedCrossRefGoogle Scholar
  80. 80.
    Kaminskas LM, Boyd BJ, Porter CJ (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6(6):1063–1084PubMedCrossRefGoogle Scholar
  81. 81.
    D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57(15):2147–2162PubMedCrossRefGoogle Scholar
  82. 82.
    Jevprasesphant R et al (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20(10):1543–1550PubMedCrossRefGoogle Scholar
  83. 83.
    Chen HT et al (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126(32):10044–10048PubMedCrossRefGoogle Scholar
  84. 84.
    Jain K et al (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394(1–2):122–142PubMedCrossRefGoogle Scholar
  85. 85.
    Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38PubMedCrossRefGoogle Scholar
  86. 86.
    Holden CA et al (2012) Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 8(5):776–783PubMedGoogle Scholar
  87. 87.
    Spataro G et al (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45:326–334PubMedCrossRefGoogle Scholar
  88. 88.
    Yang H et al (2012) Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9):7595–7606PubMedCrossRefGoogle Scholar
  89. 89.
    Yang H, Leffler CT (2013) Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther 29(2):166–172PubMedCrossRefGoogle Scholar
  90. 90.
    Nishiyama N et al (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 4(12):934–941PubMedCrossRefGoogle Scholar
  91. 91.
    Iezzi R et al (2012) Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33(3):979–988PubMedCrossRefGoogle Scholar
  92. 92.
    Marano RJ et al (2005) Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 12(21):1544–1550PubMedCrossRefGoogle Scholar
  93. 93.
    Bhagav P, Upadhyay H, Chandran S (2011) Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech 12(4):1087–1101PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tártara LI et al (2012) Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostructures as drug delivery system. J Ocul Pharmacol Ther 28(2):102–109PubMedCrossRefGoogle Scholar
  95. 95.
    Pahuja P, Arora S, Pawar P (2012) Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv 9(7):837–861PubMedCrossRefGoogle Scholar
  96. 96.
    Paolicelli P et al (2009) Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 6(3):239–253PubMedCrossRefGoogle Scholar
  97. 97.
    de la Fuente M et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62(1):100–117PubMedCrossRefGoogle Scholar
  98. 98.
    Bourlais CL et al (1998) Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res 17(1):33–58PubMedCrossRefGoogle Scholar
  99. 99.
    Gorgieva S, Kokol V (2014) Processing of gelatin-based cryogels with improved thermo-mechanical resistance, pore size gradient and high potential for sustainable protein-drug release. J Biomed Mater Res A 103(3):1119–1130PubMedCrossRefGoogle Scholar
  100. 100.
    Lai JY (2013) Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio. Drug Des Devel Ther 7:1273–1285PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24PubMedCrossRefGoogle Scholar
  102. 102.
    Cam D, Hyon SH, Ikada Y (1995) Degradation of high molecular weight poly(L-lactide) in alkaline medium. Biomaterials 16(11):833–843PubMedCrossRefGoogle Scholar
  103. 103.
    Duvvuri S et al (2007) Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23(3):264–274PubMedCrossRefGoogle Scholar
  104. 104.
    Bruining MJ et al (1999) New biodegradable networks of poly(N-vinylpyrrolidinone) designed for controlled nonburst degradation in the vitreous body. J Biomed Mater Res 47(2):189–197PubMedCrossRefGoogle Scholar
  105. 105.
    Bruining MJ et al (2000) Biodegradable three-dimensional networks of poly(dimethylamino ethyl methacrylate). Synthesis, characterization and in vitro studies of structural degradation and cytotoxicity. Biomaterials 21(6):595–604PubMedCrossRefGoogle Scholar
  106. 106.
    Hacker MC et al (2009) Biodegradable fumarate-based drug-delivery systems for ophthalmic applications. J Biomed Mater Res A 88(4):976–989PubMedCrossRefGoogle Scholar
  107. 107.
    Colthurst MJ et al (2000) Biomaterials used in the posterior segment of the eye. Biomaterials 21(7):649–665PubMedCrossRefGoogle Scholar
  108. 108.
    Jain JP et al (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103(3):541–563PubMedCrossRefGoogle Scholar
  109. 109.
    Jampel HD et al (1990) Glaucoma filtration surgery in monkeys using 5-fluorouridine in polyanhydride disks. Arch Ophthalmol 108(3):430–435PubMedCrossRefGoogle Scholar
  110. 110.
    Sinha VR et al (2004) Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23PubMedCrossRefGoogle Scholar
  111. 111.
    Pitt CG et al (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 2(4):215–220PubMedCrossRefGoogle Scholar
  112. 112.
    Beeley NR et al (2005) Fabrication, implantation, elution, and retrieval of a steroid-loaded polycaprolactone subretinal implant. J Biomed Mater Res A 73(4):437–444PubMedCrossRefGoogle Scholar
  113. 113.
    Fialho SL, Behar-Cohen F, Silva-Cunha A (2008) Dexamethasone-loaded poly(epsilon-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm 68(3):637–646PubMedCrossRefGoogle Scholar
  114. 114.
    Yasukawa T et al (2001) Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Deliv Rev 52(1):25–36PubMedCrossRefGoogle Scholar
  115. 115.
    Herrero-Vanrell R, Cardillo JA, Kuppermann BD (2011) Clinical applications of the sustained-release dexamethasone implant for treatment of macular edema. Clin Ophthalmol 5:139–146PubMedPubMedCentralGoogle Scholar
  116. 116.
    Anand R et al (1993) Control of cytomegalovirus retinitis using sustained release of intraocular ganciclovir. Arch Ophthalmol 111(2):223–227PubMedCrossRefGoogle Scholar
  117. 117.
    Kuppermann BD et al (1993) Intravitreal ganciclovir concentration after intravenous administration in AIDS patients with cytomegalovirus retinitis: implications for therapy. J Infect Dis 168(6):1506–1509PubMedCrossRefGoogle Scholar
  118. 118.
    Martin DF et al (1994) Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant. A randomized controlled clinical trial. Arch Ophthalmol 112(12):1531–1539PubMedCrossRefGoogle Scholar
  119. 119.
    Sanborn GE et al (1992) Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis. Use of an intravitreal device. Arch Ophthalmol 110(2):188–195PubMedCrossRefGoogle Scholar
  120. 120.
    Kurz D, Ciulla TA (2002) Novel approaches for retinal drug delivery. Ophthalmol Clin North Am 15(3):405–410PubMedCrossRefGoogle Scholar
  121. 121.
    Jung HJ, Chauhan A (2013) Extended release of timolol from nanoparticle-loaded fornix insert for glaucoma therapy. J Ocul Pharmacol Ther 29(2):229–235PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Grossman RE, Chu DF, Lee DA (1990) Regional ocular gentamicin levels after transcorneal and transscleral iontophoresis. Invest Ophthalmol Vis Sci 31(5):909–916PubMedGoogle Scholar
  123. 123.
    Singh P, Maibach HI (1994) Iontophoresis in drug delivery: basic principles and applications. Crit Rev Ther Drug Carrier Syst 11(2–3):161–213PubMedGoogle Scholar
  124. 124.
    Davies JB et al (2003) Delivery of several forms of DNA, DNA-RNA hybrids, and dyes across human sclera by electrical fields. Mol Vis 9:569–578PubMedGoogle Scholar
  125. 125.
    Sloan JB, Soltani K (1986) Iontophoresis in dermatology. A review. J Am Acad Dermatol 15(4 Pt 1):671–684PubMedCrossRefGoogle Scholar
  126. 126.
    Lark MR, Gangarosa LP Sr (1990) Iontophoresis: an effective modality for the treatment of inflammatory disorders of the temporomandibular joint and myofascial pain. Cranio 8(2):108–119PubMedCrossRefGoogle Scholar
  127. 127.
    Pescina S et al (2010) In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application. J Pharm Pharmacol 62(9):1189–1194PubMedCrossRefGoogle Scholar
  128. 128.
    Fay MF (1989) Indications and applications for iontophoresis. Todays OR Nurse 11(4):10–16Google Scholar
  129. 129.
    Burnette RR, Marrero D (1986) Comparison between the iontophoretic and passive transport of thyrotropin releasing hormone across excised nude mouse skin. J Pharm Sci 75(8):738–743PubMedCrossRefGoogle Scholar
  130. 130.
    Burnette RR, Ongpipattanakul B (1987) Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci 76(10):765–773PubMedCrossRefGoogle Scholar
  131. 131.
    Phipps JB, Padmanabhan RV, Lattin GA (1989) Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci 78(5):365–369PubMedCrossRefGoogle Scholar
  132. 132.
    Banga AK, Chien YW (1993) Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharm Res 10(5):697–702PubMedCrossRefGoogle Scholar
  133. 133.
    Hughes L, Maurice DM (1984) A fresh look at iontophoresis. Arch Ophthalmol 102(12):1825–1829PubMedCrossRefGoogle Scholar
  134. 134.
    Hill JM et al (1978) Iontophoresis of vidarabine monophosphate into rabbit eyes. Invest Ophthalmol Vis Sci 17(5):473–476PubMedGoogle Scholar
  135. 135.
    Hobden JA et al (1988) Iontophoretic application of tobramycin to uninfected and Pseudomonas aeruginosa-infected rabbit corneas. Antimicrob Agents Chemother 32(7):978–981PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Choi TB, Lee DA (1988) Transscleral and transcorneal iontophoresis of vancomycin in rabbit eyes. J Ocul Pharmacol 4(2):153–164PubMedCrossRefGoogle Scholar
  137. 137.
    Grossman R, Lee DA (1989) Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology 96(5):724–729PubMedCrossRefGoogle Scholar
  138. 138.
    Rootman DS et al (1988) Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci 29(9):1397–1401PubMedGoogle Scholar
  139. 139.
    Frucht-Pery J et al (1996) Efficacy of iontophoresis in the rat cornea. Graefes Arch Clin Exp Ophthalmol 234(12):765–769PubMedCrossRefGoogle Scholar
  140. 140.
    Frucht-Pery J et al (2004) Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res 78(3):745–749PubMedCrossRefGoogle Scholar
  141. 141.
    Frucht-Pery J et al (2006) Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 25(10):1182–1186PubMedCrossRefGoogle Scholar
  142. 142.
    Sarraf D et al (1993) Transscleral iontophoresis of foscarnet. Am J Ophthalmol 115(6):748–754PubMedCrossRefGoogle Scholar
  143. 143.
    Burstein NL, Leopold LH, Bernacchi DB (1985) Trans-scleral iontophoresis of gentamicin. J Ocul Pharmacol 1(4):363–368PubMedCrossRefGoogle Scholar
  144. 144.
    Barza M, Peckman C, Baum J (1986) Transscleral iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. Ophthalmology 93(1):133–139PubMedCrossRefGoogle Scholar
  145. 145.
    Church AL, Barza M, Baum J (1992) An improved apparatus for transscleral iontophoresis of gentamicin. Invest Ophthalmol Vis Sci 33(13):3543–3545PubMedGoogle Scholar
  146. 146.
    Barza M, Peckman C, Baum J (1987) Transscleral iontophoresis as an adjunctive treatment for experimental endophthalmitis. Arch Ophthalmol 105(10):1418–1420PubMedCrossRefGoogle Scholar
  147. 147.
    Hayden B et al (2006) Iontophoretic delivery of carboplatin in a murine model of retinoblastoma. Invest Ophthalmol Vis Sci 47(9):3717–3721PubMedCrossRefGoogle Scholar
  148. 148.
    Hayden BC et al (2004) Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci 45(10):3644–3649PubMedCrossRefGoogle Scholar
  149. 149.
    Voigt M et al (2002) Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci 43(10):3299–3306PubMedGoogle Scholar
  150. 150.
    Behar-Cohen FF et al (2002) Transscleral Coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res 74(1):51–59PubMedCrossRefGoogle Scholar
  151. 151.
    Cohen AE et al (2012) Evaluation of dexamethasone phosphate delivered by ocular iontophoresis for treating noninfectious anterior uveitis. Ophthalmology 119(1):66–73PubMedCrossRefGoogle Scholar
  152. 152.
    Sarraf D, Lee DA (1994) The role of iontophoresis in ocular drug delivery. J Ocul Pharmacol 10(1):69–81PubMedCrossRefGoogle Scholar
  153. 153.
    Yoshizumi MO et al (1991) Experimental transscleral iontophoresis of ciprofloxacin. J Ocul Pharmacol 7(2):163–167PubMedCrossRefGoogle Scholar
  154. 154.
    Boonme P et al (2006) Characterisation of microstructures formed in isopropyl palmitate/water/Aerosol OT:1-butanol (2:1) system. Pharmazie 61(11):927–932PubMedGoogle Scholar
  155. 155.
    Myers D (1988) Surfactant science and technology. VCH publications, New YorkGoogle Scholar
  156. 156.
    Danielsson T, Lindman B (1981) The definition of microemulsion. Colloids Surf 3:391–392CrossRefGoogle Scholar
  157. 157.
    Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions the oleopathic hydromicelles. Nature 152:102–103CrossRefGoogle Scholar
  158. 158.
    Soderholm JD et al (1998) Reversible increase in tight junction permeability to macromolecules in rat ileal mucosa in vitro by sodium caprate, a constituent of milk fat. Dig Dis Sci 43(7):1547–1552PubMedCrossRefGoogle Scholar
  159. 159.
    Attwood D, Elworthy PH, Lawrence MJ (1989) Effect of structural variations of non-ionic surfactants on micellar properties and solubilization: surfactants with semi-polar hydrophobes. J Pharm Pharmacol 41(9):585–589PubMedCrossRefGoogle Scholar
  160. 160.
    Attwood D et al (1992) A study on factors influencing the droplet size in nonionic oil-in-water microemulsions. Int J Pharm 88(1–3):417–422CrossRefGoogle Scholar
  161. 161.
    Hallouard F et al (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications–a review. Biomaterials 31(24):6249–6268PubMedCrossRefGoogle Scholar
  162. 162.
    Klibanov A (1998) Long circulating liposomes old drugs new therapeutics. Springer, BerlinGoogle Scholar
  163. 163.
    Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16(2–3):141–155CrossRefGoogle Scholar
  164. 164.
    Trotta M et al (1999) Investigation of the phase behaviour of systems containing lecithin and 2-acyl lysolecithin derivatives. Int J Pharm 190(1):83–89PubMedCrossRefGoogle Scholar
  165. 165.
    Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377(1–2):142–147PubMedCrossRefGoogle Scholar
  166. 166.
    Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release 128(3):185–199PubMedCrossRefGoogle Scholar
  167. 167.
    Kahlweit M, Busse G, Faulhaber B (1996) Preparing nontoxic microemulsions with alkyl monoglucosides and the role of alkane diols as cosolvents. Langmuir 12:861–862CrossRefGoogle Scholar
  168. 168.
    Kahlweit M (1995) Preparing non-toxic microemulsion. Langmuir 11:4185–4187CrossRefGoogle Scholar
  169. 169.
    Kahlweit M, Busse G, Faulhaber B (1995) Preparing microemulsions with lecithin. Langmuir 11:1576–1583CrossRefGoogle Scholar
  170. 170.
    Baker R (1984) Investigations into the formation and characterization of microemulsions. J Coll Int Sci 100:311–331, 332–349CrossRefGoogle Scholar
  171. 171.
    Sarciaux JM, Acar L, Sado PA (1995) Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int J Pharm 120(2):127–136CrossRefGoogle Scholar
  172. 172.
    Starker S (2002) Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J Drug Target 10:573–578CrossRefGoogle Scholar
  173. 173.
    Baroli B et al (2000) Microemulsions for topical delivery of 8-methoxsalen. J Control Release 69(1):209–218PubMedCrossRefGoogle Scholar
  174. 174.
    Lianly IL (2002) Development of an ethyl laurate based microemulsion for rapid-onset of intranasal delivery of diazepam. Int J Pharm 237:77–85CrossRefGoogle Scholar
  175. 175.
    Malcomson C (1998) Effect of oil on the level of solubilization of testosterone propionate into non-ionic oil-in-water microemulsion. J Pharm Sci 87:109–116CrossRefGoogle Scholar
  176. 176.
    Changez M, Varshney M (2000) Aerosol-OT microemulsions as transdermal carriers of tetracaine hydrochloride. Drug Dev Ind Pharm 26(5):507–512PubMedCrossRefGoogle Scholar
  177. 177.
    Trotta M, Morel S, Gasco MR (1997) Effect of oil phase composition on the skin permeation of felodipine from o/w microemulsions. Pharmazie 52(1):50–53PubMedGoogle Scholar
  178. 178.
    Malcolmson C et al (1998) Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci 87(1):109–116PubMedCrossRefGoogle Scholar
  179. 179.
    Dogru ST, Calis S, Oner F (2000) Oral multiple w/o/w emulsion formulation of a peptide salmon calcitonin: in vitro-in vivo evaluation. J Clin Pharm Ther 25(6):435–443PubMedCrossRefGoogle Scholar
  180. 180.
    Ma EL et al (2006) In vitro and in vivo evaluation of a novel oral insulin formulation. Acta Pharmacol Sin 27(10):1382–1388PubMedCrossRefGoogle Scholar
  181. 181.
    Lv FF, Zheng LQ, Tung CH (2005) Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm 301(1–2):237–246PubMedCrossRefGoogle Scholar
  182. 182.
    Lv FF et al (2006) Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. Eur J Pharm Biopharm 62(3):288–294PubMedCrossRefGoogle Scholar
  183. 183.
    Fialho SL, da Silva-Cunha A (2004) New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol 32(6):626–632PubMedCrossRefGoogle Scholar
  184. 184.
    Radomska A, Dobrucki R (2000) The use of some ingredients for microemulsion preparation containing retinol and its esters. Int J Pharm 196(2):131–134PubMedCrossRefGoogle Scholar
  185. 185.
    Martin LF et al (2013) Topical Brazilian propolis improves corneal wound healing and inflammation in rats following alkali burns. BMC Complement Altern Med 13:337PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Li G et al (2012) In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Int J Pharm 425(1–2):53–61PubMedCrossRefGoogle Scholar
  187. 187.
    Donnelly RF et al (2010) Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release 147(3):333–341PubMedCrossRefGoogle Scholar
  188. 188.
    Pettis RJ, Harvey AJ (2012) Microneedle delivery: clinical studies and emerging medical applications. Ther Deliv 3(3):357–371PubMedCrossRefGoogle Scholar
  189. 189.
    Felton L (2012) Transdermal and intradermal delivery of therapeutic agents application of physical technologies. Drug Dev Ind Pharm 38(4):513CrossRefGoogle Scholar
  190. 190.
    Bariya SH et al (2012) Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 64(1):11–29PubMedCrossRefGoogle Scholar
  191. 191.
    Chandrasekhar S et al (2013) Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv 10(8):1155–1170PubMedCrossRefGoogle Scholar
  192. 192.
    Gupta J et al (2011) Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32(28):6823–6831PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Hirobe S, Okada N, Nakagawa S (2013) Transcutaneous vaccines–current and emerging strategies. Expert Opin Drug Deliv 10(4):485–498PubMedCrossRefGoogle Scholar
  194. 194.
    Hong X et al (2013) Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther 7:945–952PubMedPubMedCentralGoogle Scholar
  195. 195.
    Nir Y et al (2003) Fear of injections in young adults: prevalence and associations. Am J Trop Med Hyg 68(3):341–344PubMedGoogle Scholar
  196. 196.
    Hamilton JG (1995) Needle phobia: a neglected diagnosis. J Fam Pract 41(2):169–175PubMedGoogle Scholar
  197. 197.
    McAllister DV et al (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100(24):13755–13760PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Patel SR et al (2011) Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res 28(1):166–176PubMedCrossRefGoogle Scholar
  199. 199.
    Jiang J et al (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48(9):4038–4043PubMedCrossRefGoogle Scholar
  200. 200.
    Jiang J et al (2009) Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res 26(2):395–403PubMedCrossRefGoogle Scholar
  201. 201.
    Palakurthi NK et al (2011) Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J Ocul Pharmacol Ther 27(2):151–156PubMedCrossRefGoogle Scholar
  202. 202.
    Ohashi M et al (2008) Efficacy of TonoLab in detecting physiological and pharmacological changes in rat intraocular pressure: comparison of TonoPen and microneedle manometry. Jpn J Ophthalmol 52(5):399–403PubMedCrossRefGoogle Scholar
  203. 203.
    Saeki T et al (2008) The efficacy of TonoLab in detecting physiological and pharmacological changes of mouse intraocular pressure–comparison with TonoPen and microneedle manometery. Curr Eye Res 33(3):247–252PubMedCrossRefGoogle Scholar
  204. 204.
    Allf BE, de Juan E Jr (1987) In vivo cannulation of retinal vessels. Graefes Arch Clin Exp Ophthalmol 225(3):221–225PubMedCrossRefGoogle Scholar
  205. 205.
    Weiss JN (1992) Treatment of central retinal vein occlusion by injection of tissue plasminogen activator into a retinal vein. Am J Ophthalmol 113:429–434CrossRefGoogle Scholar
  206. 206.
    Weiss JN, Bynoe LA (2001) Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion. Ophthalmology 108(12):2249–2257PubMedCrossRefGoogle Scholar
  207. 207.
    Glucksberg MR, Dunn R, Giebs CP (1993) In vivo micropuncture of retinal vessels. Graefes Arch Clin Exp Ophthalmol 231(7):405–407PubMedCrossRefGoogle Scholar
  208. 208.
    Han SK, Kim SW, Kim WK (1998) Microvascular anastomosis with minimal suture and fibrin glue: experimental and clinical study. Microsurgery 18(5):306–311PubMedCrossRefGoogle Scholar
  209. 209.
    Fekrat S, de Juan E Jr (1999) Chorioretinal venous anastomosis for central retinal vein occlusion: transvitreal venipuncture. Ophthalmic Surg Lasers 30(1):52–55PubMedGoogle Scholar
  210. 210.
    Tang WM, Han DP (2000) A study of surgical approaches to retinal vascular occlusions. Arch Ophthalmol 118(1):138–143PubMedCrossRefGoogle Scholar
  211. 211.
    Weiss JN (2000) Retinal surgery for treatment of central retinal vein occlusion. Ophthalmic Surg Lasers 31(2):162–165PubMedGoogle Scholar
  212. 212.
    Suzuki Y, Matsuhashi H, Nakazawa M (2003) In vivo retinal vascular cannulation in rabbits. Graefes Arch Clin Exp Ophthalmol 241(7):585–588PubMedCrossRefGoogle Scholar
  213. 213.
    Tsillimbaris M (2004) Retinal microvascular surgery: a feasibility study. Invest Ophthalmol Vis Sci 45:1963–1986CrossRefGoogle Scholar
  214. 214.
    Tameesh MK et al (2004) Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (t-PA) for the treatment of experimental retinal vein occlusion in dogs. Am J Ophthalmol 138(5):829–839PubMedCrossRefGoogle Scholar
  215. 215.
    Kadonosono K et al (2011) An experimental study of retinal endovascular surgery with a microfabricated needle. Invest Ophthalmol Vis Sci 52(8):5790–5793PubMedCrossRefGoogle Scholar
  216. 216.
    Mansoor S, Kuppermann BD, Kenney MC (2009) Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 26(4):770–784PubMedCrossRefGoogle Scholar
  217. 217.
    Herreo-Vanrell R (2001) Biodegradable micro-spheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:5–16CrossRefGoogle Scholar
  218. 218.
    Khoobehi B et al (1991) Clearance of sodium fluorescein incorporated into microspheres from the vitreous after intravitreal injection. Ophthalmic Surg 22(3):175–180PubMedGoogle Scholar
  219. 219.
    Moritera T et al (1992) Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 33(11):3125–3130PubMedGoogle Scholar
  220. 220.
    Herrero-Vanrell R et al (2000) Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles, and sterilization process. Pharm Res 17(10):1323–1328PubMedCrossRefGoogle Scholar
  221. 221.
    Kimura H et al (1994) In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr Eye Res 13(5):353–360PubMedCrossRefGoogle Scholar
  222. 222.
    Moritera T et al (1994) Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres. Curr Eye Res 13(3):171–176PubMedCrossRefGoogle Scholar
  223. 223.
    Ogura Y, Kimura H (1995) Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium. Surv Ophthalmol 39(Suppl 1):S17–S24PubMedCrossRefGoogle Scholar
  224. 224.
    Veloso AA Jr et al (1997) Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci 38(3):665–675PubMedGoogle Scholar
  225. 225.
    Moritera T et al (1991) Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci 32(6):1785–1790PubMedGoogle Scholar
  226. 226.
    Thies CA (1996) A survey of microencapsulation processes. In: Microencapsulation: methods and industrial applications. Marcel Dekker, New YorkGoogle Scholar
  227. 227.
    Delie F, Blanco-Prieto MJ (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10(1):65–80PubMedCrossRefGoogle Scholar
  228. 228.
    Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3(5):163–171PubMedCrossRefGoogle Scholar
  229. 229.
    Washington C (1996) Drug release from microparticulate systems. In: Microencapsulation: methods and industrial applications. Marcel Decker, New YorkGoogle Scholar
  230. 230.
    Herrero-Vanrell R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52(1):5–16PubMedCrossRefGoogle Scholar
  231. 231.
    Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280PubMedCrossRefGoogle Scholar
  232. 232.
    Soppimath KS et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20PubMedCrossRefGoogle Scholar
  233. 233.
    Giordano GG et al (1995) Biodegradation and tissue reaction to intravitreous biodegradable poly(D, L-lactic-co-glycolic)acid microspheres. Curr Eye Res 14(9):761–768PubMedCrossRefGoogle Scholar
  234. 234.
    Yasukawa T et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23(3):253–281PubMedCrossRefGoogle Scholar
  235. 235.
    Nan K et al (2014) Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10(8):3505–3512PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Sakurai E et al (2001) Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 33(1):31–36PubMedCrossRefGoogle Scholar
  237. 237.
    Ravi Kumar MN (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3(2):234–258PubMedGoogle Scholar
  238. 238.
    Siepmann J et al (2004) Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release 96(1):123–134PubMedCrossRefGoogle Scholar
  239. 239.
    Wang SH et al (2005) Controlled release of levonorgestrel from biodegradable poly(D, L-lactide-co-glycolide) microspheres: in vitro and in vivo studies. Int J Pharm 301(1–2):217–225PubMedCrossRefGoogle Scholar
  240. 240.
    Li W et al (2014) Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis. Int Ophthalmol 34(3):465–476PubMedCrossRefGoogle Scholar
  241. 241.
    Rong X et al (2012) Effects of erythropoietin-dextran microparticle-based PLGA/PLA microspheres on RGCs. Invest Ophthalmol Vis Sci 53(10):6025–6034PubMedCrossRefGoogle Scholar
  242. 242.
    Carrasquillo KG et al (2003) Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci 44(1):290–299PubMedCrossRefGoogle Scholar
  243. 243.
    Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44(3):1192–1201PubMedCrossRefGoogle Scholar
  244. 244.
    Moshfeghi AA, Peyman GA (2005) Micro- and nanoparticulates. Adv Drug Deliv Rev 57(14):2047–2052PubMedCrossRefGoogle Scholar
  245. 245.
    Saishin Y et al (2003) Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci 44(11):4989–4993PubMedCrossRefGoogle Scholar
  246. 246.
    Ayalasomayajula SP, Kompella UB (2003) Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol 458(3):283–289PubMedCrossRefGoogle Scholar
  247. 247.
    Ayalasomayajula SP, Kompella UB (2004) Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm Res 21(10):1797–1804PubMedCrossRefGoogle Scholar
  248. 248.
    Ayalasomayajula SP, Kompella UB (2005) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 511(2–3):191–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nathaniel J. Kim
    • 1
  • Alon Harris
    • 2
    Email author
  • Alhasan Elghouche
    • 1
  • Willy Gama
    • 1
  • Brent Siesky
    • 1
  1. 1.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations