Nanotoxicity of Nanobiomaterials in Ocular System and Its Evaluation

  • Bibhuti B. Kakoti
  • Manjir Sarma Kataki
  • Yashwant PathakEmail author


Nanotoxicology is an emerging science under the tremendously growing field of nanotechnology. The unique advantageous properties of nanoparticles or nanobiomaterials have become a challenging issue of primary concern in terms of possible unpredictable toxic interactions of these nanoparticles with the biomolecules in the physiological system. The scanty in vivo studies are insufficient to advocate the therapeutic success stories of nanobiomaterials. A plethora of reports demonstrated only in vitro studies of nanotoxicity assessment. This chapter discusses toxicity issues related to nanobiomaterials targeted for ocular delivery and current methodologies used to assess nanomaterial toxicity along with the challenges and limitations.


Nanoparticles Nanostructures Nanobiomaterial Nanotoxicity Ocular system 



The author (BBK) gratefully acknowledges the Department of Biotechnology (DBT) of the government of India for providing the Overseas Associate Fellowship for NE Region 2014 and Dibrugarh University, Dibrugarh, Assam, India, for permitting to undertake the proposed study at the University of South Florida, USA.


  1. 1.
    Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16(1):44–56. doi: 10.3109/10837450903479988 PubMedCrossRefGoogle Scholar
  2. 2.
    Abrishami M, Ganavati SZ, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 29(5):699–703PubMedCrossRefGoogle Scholar
  3. 3.
    Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlu N (2011) Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151(3):286–294. doi: 10.1016/j.jconrel.2011.01.010 PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Opthalmol. doi: 10.1016/j.sjopt.2014.02.009
  5. 5.
    Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. (0268–1161 (Print))Google Scholar
  6. 6.
    Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, Kamp DW (2001) Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals. J Lab Clin Med 137:330–339PubMedCrossRefGoogle Scholar
  7. 7.
    Alonso MJ, Sánchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55:1451–1463PubMedCrossRefGoogle Scholar
  8. 8.
    Amo EMd, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13(3–4):135–143PubMedGoogle Scholar
  9. 9.
    Aubry JP, Blaecke A, Lecoanet-Henchoz S, Jeannin P, Herbault N, Caron G, … Bonnefoy JY (1999) Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 37:197–204Google Scholar
  10. 10.
    Azevedo Costa CL, Chaves IS, Ventura-Lima J, Ferreira JLR, Ferraz L, de Carvalho LM, Monserrat JM (2012) In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C60) in zebrafish hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 155(2):206–212. doi: 10.1016/j.cbpc.2011.08.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Bartkowiak D, Hogner S, Baust H, Nothdurft W, Rottinger EM (1999) Comparative analysis of apoptosis in HL60 detected by annexin-V and fluorescein diacetate. Cytometry 37:191–196PubMedCrossRefGoogle Scholar
  12. 12.
    Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeaanny JC, … Behar-Cohen FF (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132Google Scholar
  13. 13.
    Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152PubMedCrossRefGoogle Scholar
  14. 14.
    Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124PubMedCrossRefGoogle Scholar
  15. 15.
    Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A et al (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126PubMedCrossRefGoogle Scholar
  16. 16.
    Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, … Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig Ophthalmol Vis Sci 44:3562–3569Google Scholar
  17. 17.
    Braydich-Stolle L, Hussain SM, Schlager J, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Browning LM, Kerry J, Lee KJ, Huang T, Nallathamby PD, Lowman JE, Xu NXH (2009) Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1:138–152PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52(0076–6879 (Print)):302–310Google Scholar
  20. 20.
    Calvo P, Sánchez A, Martínez J, López MI, Calonge M, Pastor JC, Alonso MJ (1996) Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res 13:311–315PubMedCrossRefGoogle Scholar
  21. 21.
    Cardillo JA, Oliveira AAS-F AG (2006) Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81(12). doi: 10.4321/S0365-66912006001200002
  22. 22.
    Chan WH, Shiao NH (2008) Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin 29:259–266PubMedCrossRefGoogle Scholar
  23. 23.
    Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167:191–200PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng J, Flahaut E, Cheng S (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716PubMedCrossRefGoogle Scholar
  25. 25.
    Choi J, Wang NS (2011) Nanoparticles in biomedical applications and their safety concerns. In: Fazel R (ed) Biomedical engineering – from theory to applications. 51000 Rijeka, Croatia- European Union. InTech, pp 300–314Google Scholar
  26. 26.
    Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW et al (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445PubMedCrossRefGoogle Scholar
  27. 27.
    Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG (2009) Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378(1–2):177–186. doi: 10.1016/j.ijpharm.2009.05.028 PubMedCrossRefGoogle Scholar
  28. 28.
    European Commission (2004) Methods for the determination of physico-chemical properties, toxicity and ecotoxicity. B-1049 Brussels. European CommissionGoogle Scholar
  29. 29.
    Cui DX (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85PubMedCrossRefGoogle Scholar
  30. 30.
    Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448PubMedCrossRefGoogle Scholar
  31. 31.
    Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Deshpande A, Narayanan K, Lehnert BE (2002) Silica-induced generation of extracellular factor(s) increases reactive oxygen species in human bronchial epithelial cells. Toxicol Sci 67:275–283PubMedCrossRefGoogle Scholar
  33. 33.
    Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Möller M (2011) Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416(2):515–524. doi: 10.1016/j.ijpharm.2011.01.004 PubMedCrossRefGoogle Scholar
  34. 34.
    Diebold Y, Clonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609PubMedCrossRefGoogle Scholar
  35. 35.
    Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856PubMedCrossRefGoogle Scholar
  36. 36.
    ECVAM (1997) Statement on the scientific validity of the 3T3 NRU PT test (an in vitro test for phototoxic potential). European Centre for the Validation of Alternative Methods. JRC Environment Institute 21020 Ispra (VA) ItalyGoogle Scholar
  37. 37.
    Edwards A, Prausnitz MR (2001) Predicted permeability of the corneal to topical drugs. Pharm Res 18:1497–1508CrossRefGoogle Scholar
  38. 38.
    Engeland M v, Nieland LJW, Ramaekers FCS, Schutte B, Rtelingsperger CPM (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9PubMedCrossRefGoogle Scholar
  39. 39.
    Espuelas MMMS, Mirshahi M, Arnedo A, Irache JM (2002) Efficacy of ganciclovir-loaded nanoparticles in human cytomegalovirus (HCMV)-infected cells. J Drug Target 10:231–238PubMedCrossRefGoogle Scholar
  40. 40.
    Filion MC, Phillips NC (1998) Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm 162:159–170CrossRefGoogle Scholar
  41. 41.
    Firme Iii CP, Bandaru PR (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6(2):245–256. doi: 10.1016/j.nano.2009.07.003 Google Scholar
  42. 42.
    Fujii NKS (2011) Recent advances in ocular drug delivery systems. Polymers 3:193–221CrossRefGoogle Scholar
  43. 43.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation (0021–9525 (Print))Google Scholar
  44. 44.
    Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19(7):475–486PubMedCrossRefGoogle Scholar
  45. 45.
    Gilmour PS, Brown DM, Beswick PH, MacNee W, Rahman I, Donaldson K (1997) Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors. Environ Health Perspect 105(Suppl 5):1313–1317Google Scholar
  46. 46.
    Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces 81(2):412–421. doi: 10.1016/j.colsurfb.2010.07.029 PubMedCrossRefGoogle Scholar
  47. 47.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRefGoogle Scholar
  48. 48.
    Griffitt R, Weil R, Hyndman K, Denslow N, Powers K, Taylor D, Barber D (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186PubMedCrossRefGoogle Scholar
  49. 49.
    Guđmundsdóttir E, Stefánsson E, Bjarnadóttir G, Sigurjónsdóttir JF, Guđmundsdóttir G, Masson M, Loftsson T (2000) Methazolamide 1 % in cyclodextrin solution lowers IOP in human ocular hypertension. Invest Ophthalmol Vis Sci 41(11):3552–3554PubMedGoogle Scholar
  50. 50.
    Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 6(2):324–333. doi: 10.1016/j.nano.2009.10.004 PubMedGoogle Scholar
  51. 51.
    Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol (Copenh) 88(8):901–904. doi: 10.1111/j.1755-3768.2009.01584.x CrossRefGoogle Scholar
  52. 52.
    Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38:627–634PubMedGoogle Scholar
  53. 53.
    Han SG, Andrews R, Gairola C, Bhalla DK (2008) Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Inhal Toxicol 20:391–398PubMedCrossRefGoogle Scholar
  54. 54.
    Harhaji L, Isakovic A, Vucicevic L, Janjetovic K, Misirkic M, Markovic Z, … Trajkovic V (2007) Modulation of tumor necrosis factor-mediated cell death by fullerenes. Pharm Res 25:1365–1376Google Scholar
  55. 55.
    Heiden T, Dengler E, Kao W, Heideman W, Peterson R (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79Google Scholar
  56. 56.
    Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 20,70-dichlorodihydrofluorescein diacetate, 5(and 6)- carboxy-20,70 dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159PubMedCrossRefGoogle Scholar
  57. 57.
    Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936PubMedCrossRefGoogle Scholar
  58. 58.
    Huang M, Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21:344–353PubMedCrossRefGoogle Scholar
  59. 59.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983PubMedCrossRefGoogle Scholar
  60. 60.
    Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, … Trajkovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183Google Scholar
  61. 61.
    Jackson BP, Bugge D, Ranville JF, Chen CY (2012) Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. Environ Sci Technol 46(10):5550–5556PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefogel O, Loft S et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Toxicology 6:1–17Google Scholar
  63. 63.
    Jakubowski W, Bartosz G (2000) 2,7-Dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757–760PubMedCrossRefGoogle Scholar
  64. 64.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711PubMedCrossRefGoogle Scholar
  65. 65.
    Jia G (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383PubMedCrossRefGoogle Scholar
  66. 66.
    Jong WHD, Borm P (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Juberías JR, Calonge M, Gómez S, López MI, Calvo P, Herreras JM, Alonso MJ (1998) Efficacy of topical cyclosporine-loaded nanocapsules on keratoplasty rejection model in the rat. Curr Eye Res 17:39–46PubMedCrossRefGoogle Scholar
  68. 68.
    Kalbacova M, Kalbac M, Dunsch L, Kataura H, Hempel U (2006) The study of the interaction of human mesenchymal stem cells and monocytes/macrophages with single-walled carbon nanotube films. Phys Status Solidi B 243:3514–3518CrossRefGoogle Scholar
  69. 69.
    Kapadia MR, Chow LW, Tsihlis ND, Ahanchi SS, Eng JW, Murar J, … Kibbe MR (2008) Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg 47(1):173–182Google Scholar
  70. 70.
    Kassem MA, AbdelRahman AA, Ghorab MM, Ahmed MB, Khalil RM (2007) Nanosuspensions as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 340:126–133PubMedCrossRefGoogle Scholar
  71. 71.
    Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14PubMedCrossRefGoogle Scholar
  72. 72.
    Kaur IP, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28:473–493PubMedCrossRefGoogle Scholar
  73. 73.
    Kayat J, Gajbhiye V, Tekade RK, Jain NK (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7(1):40–49. doi: 10.1016/j.nano.2010.06.008 PubMedGoogle Scholar
  74. 74.
    Keane RW, Srinivasan A, Foster LM, Testa M-P, Örd T, Nonner D, … Kayalar C (1997) Activation of CPP32 during apoptosis of neurons and astrocytes. J Neurosci Res 48(2):168–180. doi: 10.1002/(sici)1097-4547(19970415)48:2<168::aid-jnr9>;2-a
  75. 75.
    Keister JC, Cooper ER, Missel PJ, Lang JC, Hager DF (1991) Limits on optimizing ocular drug delivery. J Pharm Sci 80:50–53PubMedCrossRefGoogle Scholar
  76. 76.
    King Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225(1):70–79. doi: 10.1016/j.taap.2007.07.009 CrossRefGoogle Scholar
  77. 77.
    Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90PubMedCrossRefGoogle Scholar
  78. 78.
    Kompella UB, Amrite AC, Ravi RP, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420PubMedGoogle Scholar
  80. 80.
    Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313PubMedCrossRefGoogle Scholar
  81. 81.
    Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134PubMedCrossRefGoogle Scholar
  82. 82.
    Langer K, Zimmer A, Kreuter J (1997) Acrylic nanoparticles for ocular drug delivery. S.T.P Pharm Sci 7(6): 445–451Google Scholar
  83. 83.
    Lee JK, Kim DB, Kim JI, Kim PY (2000) In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. Toxicol In Vitro 14:345349Google Scholar
  84. 84.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418PubMedCrossRefGoogle Scholar
  85. 85.
    Li JJ, Zou L, Hartano D, Ong CN, Bay BH, Yung LYL (2008) Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20:138–142CrossRefGoogle Scholar
  86. 86.
    Lison D, Thomassen LC, Rabolli V, Gonzalez L, Napierska D, Seo JW, … Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104:155–162Google Scholar
  87. 87.
    Liu M, Fréchet JMJ (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2(10):393–401. doi: 10.1016/s1461-5347(99)00203-5 PubMedCrossRefGoogle Scholar
  88. 88.
    Losa C, Marchal-Heussler L, Orallo F, Vila-Jato JL, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87PubMedCrossRefGoogle Scholar
  89. 89.
    M, MP, Yin XJ, Zhao J, Ding M, Leonard S, Schwegler-Berry D, et al (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217Google Scholar
  90. 90.
    Maeda R, Noiri E, Isobe H, Homma T, Tanaka T, Negishi K, … Nakamura E (2008) A water-soluble fullerene vesicle alleviates angiotensin II-induced oxidative stress in human umbilical venous endothelial cells. Hypertens Res 31:141–151Google Scholar
  91. 91.
    Magrez A (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125PubMedCrossRefGoogle Scholar
  92. 92.
    Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163PubMedCrossRefGoogle Scholar
  93. 93.
    Maynard AD, Aitken JR, Butz T, Colvin V, Donaldson K, Oberdörster G et al (2006) Safe handling of nanotechnology. Nature 444:267–269PubMedCrossRefGoogle Scholar
  94. 94.
    Mehanna MM, Elmaradny HA, Samaha MW (2010) Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 36(1):108–118. doi: 10.3109/03639040903099751 PubMedCrossRefGoogle Scholar
  95. 95.
    Merodio M, Arnedo A, Renedo MJ, Irache JM (2001) Ganciclovir-loaded nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259PubMedCrossRefGoogle Scholar
  96. 96.
    Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078CrossRefGoogle Scholar
  97. 97.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  98. 98.
    Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525PubMedGoogle Scholar
  99. 99.
    Mukherjee SP, Davoren M, Byrne HJ (2010) In vitro mammalian cytotoxicological study of PAMAM dendrimers – towards quantitative structure activity relationships. Toxicol In Vitro 24(1):169–177. doi: 10.1016/j.tiv.2009.09.014 PubMedCrossRefGoogle Scholar
  100. 100.
    Mukherjee SP, Lyng FM, Garcia A, Davoren M, Byrne HJ (2010) Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol 248(3):259–268. doi: 10.1016/j.taap.2010.08.016 PubMedCrossRefGoogle Scholar
  101. 101.
    Muller J, Huauxa F, Moreaub N, Missona P, Heiliera JF, Delosc M et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231PubMedCrossRefGoogle Scholar
  102. 102.
    Nachlas MM, Margulies SI, Goldberg JD, Seligman AM (1960) The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317PubMedCrossRefGoogle Scholar
  103. 103.
    Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13PubMedCrossRefGoogle Scholar
  104. 104.
    Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246(1–2):91–99. doi: 10.1016/j.taap.2010.04.014 PubMedCrossRefGoogle Scholar
  105. 105.
    Nemes Z, Dietz R, Lüth JB, Gomba S, Hackenthal E, Gross F (1979) The pharmacological relevance of vital staining with neutral red. Cell Mol Life Sci 35:1475CrossRefGoogle Scholar
  106. 106.
    Normand N, Valamanesh F, Savoldelli M, Mascarelli F, BenEzra D, Courtois Y, Behar-Cohen FF (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11:184–191PubMedGoogle Scholar
  107. 107.
    Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta mouse lung epithelial cells. Environ Mol Mutagen 49:476–487Google Scholar
  108. 108.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, … Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949Google Scholar
  109. 109.
    Paolicelli P, Fuente M d l, Sánchez A, Seijo B, Alonso MJ (2009) Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 6:239–253PubMedCrossRefGoogle Scholar
  110. 110.
    Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19(2):145–151. doi: 10.1089/108076803321637672 PubMedCrossRefGoogle Scholar
  111. 111.
    Peng J, He X, Wang K, Tan W, Li H, Xing X, Wang Y (2006) An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomedicine 2:113–120PubMedGoogle Scholar
  112. 112.
    Pepić I, Hafner A, Lovrić J, Pirkić B, Filipović-Grčić J (2010) A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci 99(10):4317–4325. doi: 10.1002/jps.22137 PubMedCrossRefGoogle Scholar
  113. 113.
    Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, … Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773Google Scholar
  114. 114.
    Petit A-N, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100(2):187–193. doi: 10.1016/j.aquatox.2010.01.019 PubMedCrossRefGoogle Scholar
  115. 115.
    Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G (2002) Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16:53–61PubMedCrossRefGoogle Scholar
  116. 116.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428PubMedCrossRefGoogle Scholar
  117. 117.
    Puck TT, Marcus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103(5):653–666. doi: 10.1084/jem.103.5.653 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74PubMedCrossRefGoogle Scholar
  119. 119.
    Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M, Davaran S (2010) In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 35(12):1081–1089. doi: 10.3109/02713683.2010.508867 PubMedCrossRefGoogle Scholar
  120. 120.
    Ramires PA, Romito A, Cosentino F, Milell E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22:1467–1474PubMedCrossRefGoogle Scholar
  121. 121.
    Rao KM, Porter DW, Meighan T, Castranova V (2004) The sources of inflammatory mediators in the lung after silica exposure. Environ Health Perspect 112:1679–1686PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Roberts JE, Wielgus AR, Boyes WK, Andley U, Chignell CF (2008) Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58PubMedCrossRefGoogle Scholar
  123. 123.
    Robledo RF, Buder-Hoffmann SA, Cummins AB, Walsh ES, Taatjes DJ, Mossman BT (2000) Increased phosphorylated extracellular signal-regulated kinase immunoreactivity associated with proliferative and morphologic lung alterations after chrysotile asbestos inhalation in mice. Am J Pathol (0002–9440 (Print)). 156(4):1307–1316.Google Scholar
  124. 124.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153PubMedCrossRefGoogle Scholar
  125. 125.
    Sadaf A, Zeshan B, Wang Z, Zhang R, Xu S, Wang C, Cui Y (2012) Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe@SiO2 nanoparticles in mice. J Nanosci Nanotechnol 12(11):8287–8292Google Scholar
  126. 126.
    Sahoo SK, Dilnawaza F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151PubMedCrossRefGoogle Scholar
  127. 127.
    Sakai T, Kohno H, Higaki TIM, Saito S, Matsushima M, Mizushima Y, Kitahara K (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82:657–663PubMedCrossRefGoogle Scholar
  128. 128.
    Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawam M (1999) Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 16:85–146PubMedCrossRefGoogle Scholar
  129. 129.
    Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, … Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887. doi: 10.1021/nl0489586
  130. 130.
    Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595. doi: 10.1016/j.biomaterials.2005.05.027 PubMedCrossRefGoogle Scholar
  131. 131.
    Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406PubMedCrossRefGoogle Scholar
  132. 132.
    Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRefGoogle Scholar
  133. 133.
    Schins RP, Duffin R, Hohr D, Knaapen AM, Shi T, Weishaupt C, Stone V, … Borm PJ (2002) Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 15(9):1116–1173Google Scholar
  134. 134.
    Schoenwald RD (1990) Ocular drug delivery: pharmacokinetics considerations. Clin Pharmacokinet 18:255–269PubMedCrossRefGoogle Scholar
  135. 135.
    Shafie MAA, Fayek HHM (2013) Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery. J Clin Exp Ophthalmol 4:273. doi: 10.4172/2155-9570.1000273 Google Scholar
  136. 136.
    Sharma A, Tandon A, Tovey JCK, Gupta R, Robertson JD, Fortune JA, … Mohan RR (2011) Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnol Biol Med 7(4):505–513Google Scholar
  137. 137.
    Shen B, Scaiano JC, English AM (2006) Zeolite encapsulation decreases TiO2- photosensitized ROS generation in cultured human skin fibroblasts. Photochem Photobiol 82:5–12PubMedCrossRefGoogle Scholar
  138. 138.
    Shvedova AA (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:552–565CrossRefGoogle Scholar
  139. 139.
    Shvedova AA, Castranova V, Kisin KR, Schwegler-Berry D, Murray AR, Gandelsman VZ (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926PubMedCrossRefGoogle Scholar
  140. 140.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. (0014–4827 (Print))Google Scholar
  141. 141.
    Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, … Schins RPF (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151. doi: 10.1016/j.taap.2007.05.001
  142. 142.
    Slater TF, Sawyer B, Straeuli U (1963) Studies on succinate-tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393PubMedCrossRefGoogle Scholar
  143. 143.
    Smart SK, Cassady A, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047CrossRefGoogle Scholar
  144. 144.
    Spataro G, Malecaze F, Turrin C-O, Soler V, Duhayon C, Elena P-P, … Caminade A-M (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45(1):326–334. doi: 10.1016/j.ejmech.2009.10.017
  145. 145.
    Spielmann H, Hoffmann S, Liebsch M, Botham P, Fentem JH, Eskes C, … Zuang V (2007) The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim 35:559–601Google Scholar
  146. 146.
    Srinivasula SM, Saleh A, Ahmad M, Fernandes-Alnemri T, Alnemri ES (2001) Isolation and assay of caspases. Methods Cell Biol 66:1–27PubMedCrossRefGoogle Scholar
  147. 147.
    Stoker E, Purser F, Kwon S, Park YB, Lee JS (2008) Alternative estimation of human exposure of single-walled carbon nanotubes using three-dimensional tissue-engineered human lung. Int J Toxicol 27:441–448PubMedCrossRefGoogle Scholar
  148. 148.
    Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol (1934-368X (Electronic))Google Scholar
  149. 149.
    Tan WB, Zhang Y (2005) Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res A 75:56–62PubMedCrossRefGoogle Scholar
  150. 150.
    Tao F, Kobzik L (2002) Lung macrophage-epithelial cell interactions amplify particle-mediated cytokine release. Am J Respir Cell Mol Biol 26:499–505PubMedCrossRefGoogle Scholar
  151. 151.
    Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444Google Scholar
  152. 152.
    Thibodeau M, Giardina C, Hubbard AK (2003) Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci 76:91–101PubMedCrossRefGoogle Scholar
  153. 153.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedCrossRefGoogle Scholar
  154. 154.
    Trotter PJ, Orchard MA, Walker JH (1995) Ca2+ concentration during binding determines the manner in which annexin V binds to membranes. Biochem J 308(Pt 2):591–598PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ulrich KE, Cannizzaro SM, Langer RS, Shakeshelf KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198CrossRefGoogle Scholar
  156. 156.
    Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135PubMedCrossRefGoogle Scholar
  157. 157.
    Usenko C, Harper S, Tanguay R (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38. doi: 10.1016/j.jconrel.2004.09.015 PubMedCrossRefGoogle Scholar
  159. 159.
    Veeranarayanan S, P A, Mohamed MS, Nagaoka Y, Iwai S, Nakagame Y, Kashiwada S, Yoshida Y, Maekawa T, Kumar DS (2012) Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging. Int J Nanomedicine 7:3769–3786Google Scholar
  160. 160.
    Vega E, Egea MA, Valls O, Espina M, García ML (2006) Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 95:2393–2405PubMedCrossRefGoogle Scholar
  161. 161.
    Volotinen M, Mäenpää J, Kautiainen H, Tolonen A, Uusitalo J, Ropo A, … Aine E (2009) Ophthalmic timolol in a hydrogel vehicle leads to minor inter-individual variation in timolol concentration in aqueous humor. Eur J Pharm Sci 36(2–3):292–296. doi: 10.1016/j.ejps.2008.10.004
  162. 162.
    Wagner AJ, Bleckmann CA, Murdock RC, Schrand AM, Schlager JJ, Hussain SM (2007) Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B 111:7353–7359PubMedCrossRefGoogle Scholar
  163. 163.
    Wang SG, Lu WT, Tovmachenko O, Rai US, Yu HT, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Wilson MR, Stone V, Cullen RT, Searl A, Maynard RL, Donaldson K (2000) In vitro toxicology of respirable Montserrat volcanic ash. Occup Environ Med 57:727–733PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268PubMedCrossRefGoogle Scholar
  166. 166.
    Wottrich R, Diabate S, Krug HF (2004) Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health 207:353–361PubMedCrossRefGoogle Scholar
  167. 167.
    Wroblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213PubMedCrossRefGoogle Scholar
  168. 168.
    Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452. doi: 10.1016/j.scitotenv.2011.01.015 PubMedCrossRefGoogle Scholar
  169. 169.
    Xu J, Li X, Sun F (2011) In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery. Drug Deliv 18(2):150–158. doi: 10.3109/10717544.2010.522612 PubMedCrossRefGoogle Scholar
  170. 170.
    Yacobi NR, Phuleria HC, Demaio L, Liang CH, Peng CA, Sioutas C, … Crandall ED (2007) Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro 21:1373–1381Google Scholar
  171. 171.
    Yang CF, Shen HM, Shen Y, Zhuang ZX, Ong CN (1997) Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells). Environ Health Perspect 105(7):712–716PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Yang XL, Fan CH, Zhu HS (2002) Photo-induced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism. Toxicol In Vitro 16:41–46PubMedCrossRefGoogle Scholar
  173. 173.
    Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, … Wang A (2010) Preparation and characterization of puerarin-dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm 36(9):1027–1035. doi: 10.3109/03639041003610799
  174. 174.
    Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561PubMedCrossRefGoogle Scholar
  175. 175.
    Yong K-T, Wang Y, Roy I, Rui H, Swihart MT, Law W-C, … Reynolds JL (2012) Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2(7):681–694Google Scholar
  176. 176.
    Zeni O, Palumbo R, Bernini R, Zeni P, Sarti M, Scarfì MR (2008) Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensors 8:500–519CrossRefGoogle Scholar
  177. 177.
    Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284PubMedCrossRefGoogle Scholar
  178. 178.
    Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez P (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bibhuti B. Kakoti
    • 1
  • Manjir Sarma Kataki
    • 1
  • Yashwant Pathak
    • 2
    Email author
  1. 1.Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhIndia
  2. 2.Department of Pharmaceutical SciencesUSF College of Pharmacy, University of SouthFlorida, TampaUSA

Personalised recommendations