Skip to main content

Ocular Drug Delivery: Impact of In Vitro Cell Culture Models

  • Chapter
  • First Online:

Abstract

The physiological characteristics make effective drug delivery very challenging. Various structures such as the cornea, conjunctival epithelium, blood-retinal barrier (BRB), and the retinal epithelium block or severely reduce the concentration of drugs that can reach particular locations in the eye. Because of this, in vitro models that can effectively model each of these barriers are highly desirable. Such in vitro modeling allows researchers to minimize the use of animal studies, as drug delivery experiments require frequent euthanization. As a substitute for animal experiments, various types of in vitro models have been developed that are made up of primary cell cultures or immortalized cell lines. These cell lines allow for the detailed study of the individual processes that determine the ability of drugs and drug delivery systems to reach their desired locations in therapeutic concentrations. This chapter discusses various examples of such cell lines and their applicability in various drug delivery studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225

    Article  CAS  PubMed  Google Scholar 

  2. Offord EA et al (1999) Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. Invest Ophthalmol Vis Sci 40(6):1091–1101

    CAS  PubMed  Google Scholar 

  3. Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456

    Article  CAS  PubMed  Google Scholar 

  4. Gardner TW et al (1999) The molecular structure and function of the inner blood-retinal barrier. Doc Ophthalmol 97(3):229–237

    Article  CAS  PubMed  Google Scholar 

  5. Kahn C et al (1993) Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci 34(12):3429–3441

    CAS  PubMed  Google Scholar 

  6. Grolik M et al (2011) Regeneration of corneal epithelium using keratin modified chitosan membranes. Przegl Lek 69(10):992–997

    Google Scholar 

  7. Huang A, Tseng S, Kenyon K (1989) Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 30(4):684–689

    CAS  PubMed  Google Scholar 

  8. Hämäläinen K et al (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38(3):627–634

    PubMed  Google Scholar 

  9. Kruszewski F, Walker T, DiPasquale L (1997) Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Toxicol Sci 36(2):130–140

    Article  CAS  Google Scholar 

  10. Araki-Sasaki K et al (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36(3):614–621

    CAS  PubMed  Google Scholar 

  11. Huhtala A et al (2002) Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J Ocul Pharmacol Ther 18(2):163–175

    Article  CAS  PubMed  Google Scholar 

  12. Toropainen E et al (2003) Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur J Pharm Sci 20(1):99–106

    Article  CAS  PubMed  Google Scholar 

  13. Kitazawa K et al (2013) Establishment of a human corneal epithelial cell line lacking the functional TACSTD2 gene as an in vitro model for gelatinous drop-like dystrophy. Invest Ophthalmol Vis Sci 54(8):5701–5711

    Article  CAS  PubMed  Google Scholar 

  14. Kinoshita S et al (2012) Establishment of a human conjunctival epithelial cell line lacking the functional Tacstd2 gene (an American ophthalmological society thesis). Trans Am Ophthalmol Soc 110:166

    PubMed  PubMed Central  Google Scholar 

  15. Movahedan H, Anvari-Ardekani HR, Nowroozzadeh MH (2013) Limbal stem cell transplantation for gelatinous drop-like corneal dystrophy. J Ophthalmic Vis Res 8(2):107

    PubMed  PubMed Central  Google Scholar 

  16. Alekseev O et al (2014) Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Translat Vis Sci Technol 3(2)

    Google Scholar 

  17. Zhu X et al (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol Vis 18:1973

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J et al (2014) Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules 15(4):1346–1354

    Article  CAS  PubMed  Google Scholar 

  19. Griffith M et al (1999) Functional human corneal equivalents constructed from cell lines. Science 286(5447):2169–2172

    Article  CAS  PubMed  Google Scholar 

  20. Engelke M et al (2013) A human hemi-cornea model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol In Vitro 27(1):458–468

    Article  CAS  PubMed  Google Scholar 

  21. Tegtmeyer S, Papantoniou I, Müller-Goymann CC (2001) Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm 51(2):119–125

    Article  CAS  PubMed  Google Scholar 

  22. Diebold Y et al (2003) Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Vis Sci 44(10):4263–4274

    Article  PubMed  Google Scholar 

  23. Gao J et al (2013) Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin a. Invest Ophthalmol Vis Sci 54(7):4717–4733

    Article  CAS  PubMed  Google Scholar 

  24. Brasnu E et al (2008) Comparative study on the cytotoxic effects of benzalkonium chloride on the Wong-Kilbourne derivative of Chang conjunctival and IOBA-NHC cell lines. Mol Vis 14:394–402

    Google Scholar 

  25. Cunha-Vaz JG (1997) The blood-ocular barriers: past, present, and future. Doc Ophthalmol 93(1–2):149–157

    Article  CAS  PubMed  Google Scholar 

  26. Bochot A, Couvreur P, Fattal E (2000) Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 19(2):131–147

    Article  CAS  PubMed  Google Scholar 

  27. Jumbe NL, Miller MH (2003) Ocular drug transfer following systemic drug administration. Drugs Pharm Sci 130:109–134

    CAS  Google Scholar 

  28. Maurice D, Mishima S (1984) Ocular pharmacokinetics. In: Pharmacology of the eye. Springer, New York, pp 19–116

    Chapter  Google Scholar 

  29. Mitra AK (2003) Ophthalmic drug delivery systems. Marcel Dekker, New York

    Book  Google Scholar 

  30. Marmor M (1998) Structure, function, and disease of the retinal pigment epithelium. In Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium, vol 3. Oxford University Press, New York, p 12

    Google Scholar 

  31. Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3(1):45–56

    Article  CAS  PubMed  Google Scholar 

  32. Sunkara G, Kompella UB (2003) Membrane transport processes in the eye. Drugs Pharm Sci 130:13–58

    CAS  Google Scholar 

  33. Eldem T et al (2002) Cell cultures of the retinal pigment epithelium to model the blood–retinal barrier for retinal drug and gene delivery. Cell culture models of biological barriers: in vitro test systems for drug absorption and delivery, 2002, p 271

    Google Scholar 

  34. Davis AA et al (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36(5):955–964

    CAS  PubMed  Google Scholar 

  35. Mannerström M et al (2001) The phagocytosis of rod outer segments is inhibited by selected drugs in retinal pigment epithelial cell cultures. Pharmacol Toxicol 88(1):27–33

    Article  PubMed  Google Scholar 

  36. Hyvönen Z et al (2000) Novel cationic amphiphilic 1, 4-dihydropyridine derivatives for DNA delivery. Biochim Biophys Acta 1509(1):451–466

    Article  PubMed  Google Scholar 

  37. Dunn KC et al (1998) Use of the ARPE-19 cell line as a model of RPE polarity: basolateral secretion of FGF5. Invest Ophthalmol Vis Sci 39(13):2744–2749

    CAS  PubMed  Google Scholar 

  38. Bodnar AG et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  39. Jiang X-R et al (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21(1):111–114

    Article  CAS  PubMed  Google Scholar 

  40. Rambhatla L et al (2002) In vitro differentiation capacity of telomerase immortalized human RPE cells. Invest Ophthalmol Vis Sci 43(5):1622–1630

    PubMed  Google Scholar 

  41. Rossem V, Vos D (1998) Polarized secretion of IL‐6 and IL‐8 by human retinal pigment epithelial cells. Clin Exp Immunol 112(1):34–43

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gillies MC, Su T (1995) Interferon-α 2b enhances barrier function of bovine retinal microvascular endothelium in vitro. Microvasc Res 49(3):277–288

    Article  CAS  PubMed  Google Scholar 

  43. Gillies MC et al (1997) Effect of high glucose on permeability of retinal capillary endothelium in vitro. Invest Ophthalmol Vis Sci 38(3):635–642

    CAS  PubMed  Google Scholar 

  44. Gardner TW (1995) Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans Am Ophthalmol Soc 93:583

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gardner T et al (1996) Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 320:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yaccino JAM et al (1997) Physiological transport properties of cultured retinal microvascular endothelial cell monolayers. Curr Eye Res 16(8):761–768

    Article  CAS  PubMed  Google Scholar 

  47. Chang YS et al (2000) Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc Res 59(2):265–277

    Article  CAS  PubMed  Google Scholar 

  48. Lakshminarayanan S et al (2000) Effect of VEGF on retinal microvascular endothelial hydraulic conductivity: the role of NO. Invest Ophthalmol Vis Sci 41(13):4256–4261

    CAS  PubMed  Google Scholar 

  49. Antonetti DA et al (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80(4):667–677

    Article  CAS  PubMed  Google Scholar 

  50. Hosoya K-I et al (2001) Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res 72(2):163–172

    Article  CAS  PubMed  Google Scholar 

  51. Shen J et al (2003) Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res 20(9):1357–1363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yashwant Pathak or Vijaykumar Sutariya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solanki, A., Desai, S., Grover, A., Hirani, A., Pathak, Y., Sutariya, V. (2016). Ocular Drug Delivery: Impact of In Vitro Cell Culture Models. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_21

Download citation

Publish with us

Policies and ethics