Ocular Drug Delivery: Impact of In Vitro Cell Culture Models

  • Aum Solanki
  • Sumir Desai
  • Aditya Grover
  • Anjali Hirani
  • Yashwant PathakEmail author
  • Vijaykumar SutariyaEmail author


The physiological characteristics make effective drug delivery very challenging. Various structures such as the cornea, conjunctival epithelium, blood-retinal barrier (BRB), and the retinal epithelium block or severely reduce the concentration of drugs that can reach particular locations in the eye. Because of this, in vitro models that can effectively model each of these barriers are highly desirable. Such in vitro modeling allows researchers to minimize the use of animal studies, as drug delivery experiments require frequent euthanization. As a substitute for animal experiments, various types of in vitro models have been developed that are made up of primary cell cultures or immortalized cell lines. These cell lines allow for the detailed study of the individual processes that determine the ability of drugs and drug delivery systems to reach their desired locations in therapeutic concentrations. This chapter discusses various examples of such cell lines and their applicability in various drug delivery studies.


In vitro modeling Corneal epithelium Corneal stroma Conjunctival epithelium Blood-retinal barrier (BRB) Retinal pigment epithelium (RPE) Tight junctions Primary cell culture Immortalized cell culture 


  1. 1.
    Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225CrossRefPubMedGoogle Scholar
  2. 2.
    Offord EA et al (1999) Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. Invest Ophthalmol Vis Sci 40(6):1091–1101PubMedGoogle Scholar
  3. 3.
    Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456CrossRefPubMedGoogle Scholar
  4. 4.
    Gardner TW et al (1999) The molecular structure and function of the inner blood-retinal barrier. Doc Ophthalmol 97(3):229–237CrossRefPubMedGoogle Scholar
  5. 5.
    Kahn C et al (1993) Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci 34(12):3429–3441PubMedGoogle Scholar
  6. 6.
    Grolik M et al (2011) Regeneration of corneal epithelium using keratin modified chitosan membranes. Przegl Lek 69(10):992–997Google Scholar
  7. 7.
    Huang A, Tseng S, Kenyon K (1989) Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 30(4):684–689PubMedGoogle Scholar
  8. 8.
    Hämäläinen K et al (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38(3):627–634PubMedGoogle Scholar
  9. 9.
    Kruszewski F, Walker T, DiPasquale L (1997) Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Toxicol Sci 36(2):130–140CrossRefGoogle Scholar
  10. 10.
    Araki-Sasaki K et al (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36(3):614–621PubMedGoogle Scholar
  11. 11.
    Huhtala A et al (2002) Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J Ocul Pharmacol Ther 18(2):163–175CrossRefPubMedGoogle Scholar
  12. 12.
    Toropainen E et al (2003) Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur J Pharm Sci 20(1):99–106CrossRefPubMedGoogle Scholar
  13. 13.
    Kitazawa K et al (2013) Establishment of a human corneal epithelial cell line lacking the functional TACSTD2 gene as an in vitro model for gelatinous drop-like dystrophy. Invest Ophthalmol Vis Sci 54(8):5701–5711CrossRefPubMedGoogle Scholar
  14. 14.
    Kinoshita S et al (2012) Establishment of a human conjunctival epithelial cell line lacking the functional Tacstd2 gene (an American ophthalmological society thesis). Trans Am Ophthalmol Soc 110:166PubMedPubMedCentralGoogle Scholar
  15. 15.
    Movahedan H, Anvari-Ardekani HR, Nowroozzadeh MH (2013) Limbal stem cell transplantation for gelatinous drop-like corneal dystrophy. J Ophthalmic Vis Res 8(2):107PubMedPubMedCentralGoogle Scholar
  16. 16.
    Alekseev O et al (2014) Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Translat Vis Sci Technol 3(2)Google Scholar
  17. 17.
    Zhu X et al (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol Vis 18:1973PubMedPubMedCentralGoogle Scholar
  18. 18.
    Yang J et al (2014) Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules 15(4):1346–1354CrossRefPubMedGoogle Scholar
  19. 19.
    Griffith M et al (1999) Functional human corneal equivalents constructed from cell lines. Science 286(5447):2169–2172CrossRefPubMedGoogle Scholar
  20. 20.
    Engelke M et al (2013) A human hemi-cornea model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol In Vitro 27(1):458–468CrossRefPubMedGoogle Scholar
  21. 21.
    Tegtmeyer S, Papantoniou I, Müller-Goymann CC (2001) Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm 51(2):119–125CrossRefPubMedGoogle Scholar
  22. 22.
    Diebold Y et al (2003) Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Vis Sci 44(10):4263–4274CrossRefPubMedGoogle Scholar
  23. 23.
    Gao J et al (2013) Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin a. Invest Ophthalmol Vis Sci 54(7):4717–4733CrossRefPubMedGoogle Scholar
  24. 24.
    Brasnu E et al (2008) Comparative study on the cytotoxic effects of benzalkonium chloride on the Wong-Kilbourne derivative of Chang conjunctival and IOBA-NHC cell lines. Mol Vis 14:394–402Google Scholar
  25. 25.
    Cunha-Vaz JG (1997) The blood-ocular barriers: past, present, and future. Doc Ophthalmol 93(1–2):149–157CrossRefPubMedGoogle Scholar
  26. 26.
    Bochot A, Couvreur P, Fattal E (2000) Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 19(2):131–147CrossRefPubMedGoogle Scholar
  27. 27.
    Jumbe NL, Miller MH (2003) Ocular drug transfer following systemic drug administration. Drugs Pharm Sci 130:109–134Google Scholar
  28. 28.
    Maurice D, Mishima S (1984) Ocular pharmacokinetics. In: Pharmacology of the eye. Springer, New York, pp 19–116CrossRefGoogle Scholar
  29. 29.
    Mitra AK (2003) Ophthalmic drug delivery systems. Marcel Dekker, New YorkCrossRefGoogle Scholar
  30. 30.
    Marmor M (1998) Structure, function, and disease of the retinal pigment epithelium. In Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium, vol 3. Oxford University Press, New York, p 12Google Scholar
  31. 31.
    Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3(1):45–56CrossRefPubMedGoogle Scholar
  32. 32.
    Sunkara G, Kompella UB (2003) Membrane transport processes in the eye. Drugs Pharm Sci 130:13–58Google Scholar
  33. 33.
    Eldem T et al (2002) Cell cultures of the retinal pigment epithelium to model the blood–retinal barrier for retinal drug and gene delivery. Cell culture models of biological barriers: in vitro test systems for drug absorption and delivery, 2002, p 271Google Scholar
  34. 34.
    Davis AA et al (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36(5):955–964PubMedGoogle Scholar
  35. 35.
    Mannerström M et al (2001) The phagocytosis of rod outer segments is inhibited by selected drugs in retinal pigment epithelial cell cultures. Pharmacol Toxicol 88(1):27–33CrossRefPubMedGoogle Scholar
  36. 36.
    Hyvönen Z et al (2000) Novel cationic amphiphilic 1, 4-dihydropyridine derivatives for DNA delivery. Biochim Biophys Acta 1509(1):451–466CrossRefPubMedGoogle Scholar
  37. 37.
    Dunn KC et al (1998) Use of the ARPE-19 cell line as a model of RPE polarity: basolateral secretion of FGF5. Invest Ophthalmol Vis Sci 39(13):2744–2749PubMedGoogle Scholar
  38. 38.
    Bodnar AG et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352CrossRefPubMedGoogle Scholar
  39. 39.
    Jiang X-R et al (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21(1):111–114CrossRefPubMedGoogle Scholar
  40. 40.
    Rambhatla L et al (2002) In vitro differentiation capacity of telomerase immortalized human RPE cells. Invest Ophthalmol Vis Sci 43(5):1622–1630PubMedGoogle Scholar
  41. 41.
    Rossem V, Vos D (1998) Polarized secretion of IL‐6 and IL‐8 by human retinal pigment epithelial cells. Clin Exp Immunol 112(1):34–43CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gillies MC, Su T (1995) Interferon-α 2b enhances barrier function of bovine retinal microvascular endothelium in vitro. Microvasc Res 49(3):277–288CrossRefPubMedGoogle Scholar
  43. 43.
    Gillies MC et al (1997) Effect of high glucose on permeability of retinal capillary endothelium in vitro. Invest Ophthalmol Vis Sci 38(3):635–642PubMedGoogle Scholar
  44. 44.
    Gardner TW (1995) Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans Am Ophthalmol Soc 93:583PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gardner T et al (1996) Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 320:717–721CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yaccino JAM et al (1997) Physiological transport properties of cultured retinal microvascular endothelial cell monolayers. Curr Eye Res 16(8):761–768CrossRefPubMedGoogle Scholar
  47. 47.
    Chang YS et al (2000) Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc Res 59(2):265–277CrossRefPubMedGoogle Scholar
  48. 48.
    Lakshminarayanan S et al (2000) Effect of VEGF on retinal microvascular endothelial hydraulic conductivity: the role of NO. Invest Ophthalmol Vis Sci 41(13):4256–4261PubMedGoogle Scholar
  49. 49.
    Antonetti DA et al (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80(4):667–677CrossRefPubMedGoogle Scholar
  50. 50.
    Hosoya K-I et al (2001) Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res 72(2):163–172CrossRefPubMedGoogle Scholar
  51. 51.
    Shen J et al (2003) Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res 20(9):1357–1363CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Honors CollegeUniversity of South FloridaTampaUSA
  2. 2.College of PharmacyUniversity of South FloridaTampaUSA
  3. 3.College of MedicineUniversity of South FloridaTampaUSA
  4. 4.Department of Pharmaceutical SciencesUSF College of Pharmacy, University of South FloridaTampaUSA
  5. 5.School of Biomedical Engineering and SciencesVirginia Tech-Wake Forest UniversityBlacksburgUSA
  6. 6.Department of Pharmaceutical SciencesCollege of Pharmacy, University of South FloridaTampaUSA

Personalised recommendations