Animal Models to Evaluate Nanoparticulate Ocular Drug Delivery Systems

  • Amy Broadwater
  • Anjali Hirani
  • Yashwant PathakEmail author


Ophthalmic injuries and diseases can be devastating, especially when eyesight is at risk. Steps have been taken to enhance treatment options for patients with conditions such as glaucoma or fungal eye infections, to name a few. Nanoparticle ophthalmologic drug delivery offers a chance for a more effective treatment against many common eye malignancies by increasing the efficacy of many current eye medications. Additionally, nanoparticles open a door to new treatment approaches, such as sustained release for chronic conditions or for drugs with low patient compliance, by discovering new drug delivery methods. Without the use of animal models in medical research, we would not be able to take great strides in the direction of optimum patient health. Evaluation of these modern drug delivery systems in animal models shows great promise for the future of ophthalmologic health.


Ocular drug Animal studies Nanoparticles Glaucoma Ocular infection Ocular cancer 


  1. 1.
    Lin HR, Chan PC (2013) Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater 101B(5):689–699CrossRefGoogle Scholar
  2. 2.
    Diebold Y, Jarrín M, Sáez V, Carvalho EL, Orea M, Calonge M et al (2007) Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564CrossRefPubMedGoogle Scholar
  3. 3.
    Salamanca AE et al (2006) Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Investig Ophthalmol Vis Sci 47(4):1416–1425CrossRefGoogle Scholar
  4. 4.
    Bourges JL et al (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig Ophthalmol Vis Sci 4(8):3562–3569CrossRefGoogle Scholar
  5. 5.
    Farjo R et al (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1(1):e38CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bernards DA et al (2013) Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J Ocul Pharmacol Ther 29(2):249–257CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tunc M et al (1999) Intraepithelial and invasive squamous cell carcinoma of the conjunctiva: analysis of 60 cases. Br J Ophthalmol 83:98–103CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nagarwal RC et al (2011) Modified PLA nano in situ gel: a potential ophthalmic drug delivery system. Colloids Surf B Biointerfaces 86(1):28–34CrossRefPubMedGoogle Scholar
  9. 9.
    Lexi-Comp, Inc. (Lexi-DrugsTM) (2014) Lexi-Comp, Inc.Google Scholar
  10. 10.
    Tayel SA, El-Nabarawi MA, Tadros MI, Adb-Elsalam WH (2013) Positively charged polymeric nanoparticles of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTeh 14(2):782–793CrossRefGoogle Scholar
  11. 11.
    Gratieri T et al (2011) Enhancing and Sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 79(2):320–327CrossRefPubMedGoogle Scholar
  12. 12. Accessed 25 Oct 2014
  13. 13.
  14. 14.
    Kashiwagi K et al (2013) Development of latanoprost-loaded nanosheet as a new drug delivery system. Investig Ophthalmol Vis Sci 54(8):5629–5637CrossRefGoogle Scholar
  15. 15.
    Adair TH, Montani JP (2010) Angiogenesis. Morgan and Claypool Life Sciences, San RafaelGoogle Scholar
  16. 16.
    Jani PD, Singh N, Jenkins C, Raghava S, Mo Y, Amin S et al (2007) Nanoparticles sustain expression of Flt interceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 48:2030–2036CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amy Broadwater
    • 1
  • Anjali Hirani
    • 3
    • 4
  • Yashwant Pathak
    • 2
    Email author
  1. 1.College of PharmacyUniversity of South FloridaTampaUSA
  2. 2.Department of Pharmaceutical SciencesUSF College of Pharmacy, University of South FloridaTampaUSA
  3. 3.Department of Pharmaceutical SciencesUSF College of Pharmacy, University of SouthTampaUSA
  4. 4.School of Biomedical Engineering and SciencesVirginia Tech-Wake Forest UniversityBlacksburgUSA

Personalised recommendations