Advertisement

Intraocular Drug Delivery Technologies: Advancing Treatment of Posterior Segment Disorders of the Eye

  • Viness PillayEmail author
  • Yahya E. Choonara
  • Lisa C. du Toit
Chapter

Abstract

Posterior segment ocular (vitreoretinal) disorders are the foremost contributors to visual impairment and, ultimately, blindness. This is placing an increasing demand on the pharmaceutical scientist to formulate effective ophthalmic drug delivery systems. Biophysiological blood–ocular barriers present a major challenge in achieving adequate bioactive bioavailability to the posterior segment, necessitating the search for pathways that can achieve access to the posterior ocular tissues for successful management of these disorders. Despite drug advances, the pharmacological management of these severe ocular pathologies is still a major hurdle, but a surmountable one. Research has been implicit in conveying that innovative polymeric drug delivery systems are essential for realizing a superlative pharmaceutical intervention, where effective bioactives are available for intraocular disease treatment. Increasingly innovative approaches are being investigated to address intraocular drug delivery challenges, each striving to achieve enhanced targeted bioactive delivery to the posterior ocular tissues. This chapter provides an overview of pertinent developments in the design of intraocular delivery systems; all of which are attempts at improving the treatment and/or management of posterior segment/vitreoretinal pathologies of the eye.

Keywords

Vitreoretinal disorders Polymeric intraocular delivery systems Biodegradable and nonbiodegradable intraocular systems Intraocular microsystems and nanosystems Hybrid intraocular delivery systems Microneedles Biologics 

References

  1. 1.
    Robinson JC (1993) Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 29–58Google Scholar
  2. 2.
    Henderer JD, Rapuano CJ (2011) Chapter 64. Ocular pharmacology. In: Chabner BA, Brunton LL, Knollman BC (eds). Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York. Retrieved from URL: http://www.accesspharmacy.com/content.aspx?aID = 16681771.
  3. 3.
    du Toit LC, Govender T, Carmichael T et al (2013) Design of an anti-inflammatory composite nanosystem and evaluation of its potential for ocular drug delivery. J Pharm Sci 102:2780–2805PubMedCrossRefGoogle Scholar
  4. 4.
    Nanjawade BK, Manvi FV, Manjappa AS (2007) In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122:119–134PubMedCrossRefGoogle Scholar
  5. 5.
    Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today 13:135–143PubMedCrossRefGoogle Scholar
  6. 6.
    Herrero-Vanrell R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:5–16PubMedCrossRefGoogle Scholar
  7. 7.
    Janoria KG, Gunda S, Boddu SH et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–388PubMedCrossRefGoogle Scholar
  8. 8.
    Yasukawa T, Ogura Y, Sakurai E et al (2005) Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Deliv Rev 57:2033–2046PubMedCrossRefGoogle Scholar
  9. 9.
    Haesslein A, Ueda H, Hacker MC et al (2006) Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. J Control Release 114:251–260PubMedCrossRefGoogle Scholar
  10. 10.
    de la Fuente M, Raviña M, Paolicelli P et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117PubMedCrossRefGoogle Scholar
  11. 11.
    Roth DB, Chieh J, Spirn MJ et al (2003) Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol 121:1279–1282PubMedCrossRefGoogle Scholar
  12. 12.
    Moshfeghi DM, Kaiser PK, Scott IU et al (2003) Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am J Ophthalmol 136:791–796PubMedCrossRefGoogle Scholar
  13. 13.
    Jonas JB, Kreissig I, Degenring RF (2003) Intravitreal triamcinolone acetonide for pseudophakic cystoid macular edema. Am J Ophthalmol 136:384–386PubMedCrossRefGoogle Scholar
  14. 14.
    Gillies MC, Simpson JM, Billson FA et al (2004) Safety of an intravitreal injection of triamcinolone. Arch Ophthalmol 122:336–340PubMedCrossRefGoogle Scholar
  15. 15.
    Jonas JB, Hayler J, Sofker A et al (2001) Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative diabetic retinopathy. Am J Ophthalmol 131:468–471PubMedCrossRefGoogle Scholar
  16. 16.
    Ashton P (2000) Sustained-release inserts help deliver intraocular drugs. (Brief article) (Column) Ophthalmol Times, May.Google Scholar
  17. 17.
    Allen HF, Mangiaracine AB (1964) Bacterial endophthalmitis after cataract extraction: a study of 22 infections in 20.000 operations. Arch Ophthalmol 72:454–462PubMedCrossRefGoogle Scholar
  18. 18.
    Okada AA, Johnson RP, Liles CW et al (1994) Endogenous bacterial endophthalmitis: report of a ten-year retrospective study. Ophthalmology 101:832–838PubMedCrossRefGoogle Scholar
  19. 19.
    Peyman GA, Ganiban GJ (1995) Delivery systems for intraocular routes. Adv Drug Deliv Rev 16:107–123CrossRefGoogle Scholar
  20. 20.
    Gaudana R, Krishna Ananthula H, Parenky A et al (2010) Ocular drug delivery. AAPS J 12:348–360PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135PubMedCrossRefGoogle Scholar
  22. 22.
    Espana E, Chipont E, Sanchez S et al (1993) Collagen shields enhanced penetration of topical cyclosporine. Invest Ophthalmol Vis Sci 34(Suppl):1488Google Scholar
  23. 23.
    Kim JH, Kim KW, Kim MH et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20:505101PubMedCrossRefGoogle Scholar
  24. 24.
    Singh SR, Grossniklaus HE, Kang SJ et al (2009) Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 16:645–659PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Suzuki T, Uno T, Chen G et al (2008) Ocular distribution of intravenously administered micafungin in rabbits. J Infect Chemother 14:204–207PubMedCrossRefGoogle Scholar
  26. 26.
    Regnier A, Schneider M, Concordet D et al (2008) Intraocular pharmacokinetics of intravenously administered marbofloxacin in rabbits with experimentally induced acute endophthalmitis. Am J Vet Res 69:410–515PubMedCrossRefGoogle Scholar
  27. 27.
    Goldblum D, Rohrer K, Frueh BE et al (2002) Ocular distribution of intravenously administered lipid formulations of amphotericin B in a rabbit model. Antimicrob Agents Chemother 46:3719–3723PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ananthula HK, Vaishya RD, Barot M et al (2009) Duane’s ophthalmology. In: Tasman W, Jaeger EA (eds) Bioavailability. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  29. 29.
    Gipson IK, Argueso P (2003) Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 231:1–49PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmed I (2003) The noncorneal route in ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 335–363CrossRefGoogle Scholar
  31. 31.
    Barar J, Javadzadeh AR, Omidi Y (2008) Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 5:567–581PubMedCrossRefGoogle Scholar
  32. 32.
    Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52(1):37–48PubMedCrossRefGoogle Scholar
  33. 33.
    Kim SH, Lutz RJ, Wang NS et al (2007) Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 39:244–254PubMedCrossRefGoogle Scholar
  34. 34.
    Kampougeris G, Antoniadou A, Kavouklis E et al (2005) Penetration of moxifloxacin into the human aqueous humour after oral administration. Br J Ophthalmol 89:628–631PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Santulli RJ, Kinney WA, Ghosh S et al (2008) Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther 324:894–901PubMedCrossRefGoogle Scholar
  36. 36.
    Shirasaki Y, Miyashita H, Yamaguchi M (2006) Exploration of orally available calpain inhibitors. Part 3: Dipeptidyl alpha-ketoamide derivatives containing pyridine moiety. Bioorg Med Chem 14:5691–5698PubMedCrossRefGoogle Scholar
  37. 37.
    Sakamoto H, Sakamoto M, Hata Y et al (2007) Aqueous and vitreous penetration of levofloxacin after topical and/or oral administration. Eur J Ophthalmol 17:372–376PubMedGoogle Scholar
  38. 38.
    Coppens M, Versichelen L, Mortier E (2002) Treatment of postoperative pain after ophthalmic surgery. Bull Soc Belge Ophtalmol 285:27–32Google Scholar
  39. 39.
    Rajpal T, Srinivas A, Azad RV et al (2009) Evaluation of vitreous levels of gatifloxacin after systemic administration in inflamed and non-inflamed eyes. Acta Ophthalmol 87:648–652PubMedCrossRefGoogle Scholar
  40. 40.
    Samtani S, Amaral J, Campos MM et al (2009) Doxycycline-mediated inhibition of choroidal neovascularization. Invest Ophthalmol Vis Sci 50:5098–5106PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chong DY, Johnson MW, Huynh TH et al (2009) Vitreous penetration of orally administered famciclovir. Am J Ophthalmol 148:38–42PubMedCrossRefGoogle Scholar
  42. 42.
    Takahashi K, Saishin Y, King AG et al (2009) Suppression and regression of choroidal neovascularization by the multitargeted kinase inhibitor pazopanib. Arch Ophthalmol 127:494–499PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kokke KH, Morris JA, Lawrenson JG (2008) Oral omega-6 essential fatty acid treatment in contact lens associated dry eye. Cont Lens Anterior Eye 31:141–146PubMedCrossRefGoogle Scholar
  44. 44.
    Clement DB, Tailor V (1987) A study of aqueous and serum levels of ceftazidime following subconjunctival administration. Br J Ophthalmol 71:433–435CrossRefGoogle Scholar
  45. 45.
    Axelrod J-L, Newton JC, Klein RM et al (1987) Penetration of imipenem into human aqueous and vitreous humor. Am J Ophthalmol 104:649–653PubMedCrossRefGoogle Scholar
  46. 46.
    Sharir M, Triester G, Kneer J et al (1989) The intravitreal penetration of ceftriaxone in man following systemic administration. Invest Ophthalmol Vis Sci 30:2179–2183PubMedGoogle Scholar
  47. 47.
    Hosseini K, Matsushima D, Johnson J et al (2008) Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther 24:301–308PubMedCrossRefGoogle Scholar
  48. 48.
    Kim SH, Csaky KG, Wang NS et al (2008) Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm Res 25:512–520PubMedCrossRefGoogle Scholar
  49. 49.
    Mitra AK, Anand BS, Duvvuri S (2006) Drug delivery to the eye. In: Fischbarg J (ed) The biology of the eye. Academic, New York, pp 307–351Google Scholar
  50. 50.
    Peeters L, Sanders NN, Braeckmans K et al (2005) Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 46:3553–3561PubMedCrossRefGoogle Scholar
  51. 51.
    Pitkanen L, Ruponen M, Nieminen J et al (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20:576–583PubMedCrossRefGoogle Scholar
  52. 52.
    Kim H, Robinson SB, Csaky KG (2009) Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 26:329–337PubMedCrossRefGoogle Scholar
  53. 53.
    Von Sallmann L (1948) Controversial points in penicillin therapy for ocular diseases. Arch Ophthalmol 39:752–804CrossRefGoogle Scholar
  54. 54.
    Von Sallmann L, Meyer K, Di Grandi J (1944) Experimental study on penicillin treatment of ectogenous infection of vitreous. Arch Ophthalmol 32:179–189CrossRefGoogle Scholar
  55. 55.
    Lewis DH (1990) Controlled release of bioactive agents from lactide/glycolide polymers. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 1–41Google Scholar
  56. 56.
    Wood DA (1980) Biodegradable drug delivery systems. Int J Pharm 7:1–18CrossRefGoogle Scholar
  57. 57.
    Chowhan M, Weiner AL, Bhagat H (2002) Drug delivery-ophthalmic route. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York, pp 863–870Google Scholar
  58. 58.
    Davis JL, Gilger BC, Robinson MR (2004) Novel approaches to ocular drug delivery. Curr Opin Mol Ther 6:195–205PubMedGoogle Scholar
  59. 59.
    Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3:45–56PubMedCrossRefGoogle Scholar
  60. 60.
    Edlund U, Albertsson AC (2002) Degradable polymer microspheres for controlled drug delivery. In: Albertsson AC (ed) Advances in polymer science, vol 157. Springer, Berlin, pp 68–112Google Scholar
  61. 61.
    Ghate D, Edelhauser HF (2006) Ocular drug delivery. Expert Opin Drug Deliv 3:275–287PubMedCrossRefGoogle Scholar
  62. 62.
    Heller J (2005) Ocular delivery using poly(orto esters). Adv Drug Deliv Rev 57:2053–2062PubMedCrossRefGoogle Scholar
  63. 63.
    Hughes PM, Olejnik O, Chang TS et al (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032PubMedCrossRefGoogle Scholar
  64. 64.
    Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3:234–258Google Scholar
  65. 65.
    Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639PubMedCrossRefGoogle Scholar
  66. 66.
    Stuart A (2010) The promise of implantable drug delivery systems. Eyenet 3:33–37Google Scholar
  67. 67.
    Thrimawithana TR, Young SA, Bunt CR et al (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–277PubMedCrossRefGoogle Scholar
  68. 68.
    Weiner AL (1994) Polymeric drug delivery systems for the eye. In: Domb AJ (ed) Polymeric site specific pharmacotherapy. Wiley, New York, pp 316–346Google Scholar
  69. 69.
    Park H, Park K (1996) Biocompatibility issues of implantable drug delivery systems. Pharm Res 13:1770–1776PubMedCrossRefGoogle Scholar
  70. 70.
    Zaheer S, Lehman J, Stevenson G (1982) Capsular contracture around silicone implants: the role of intraluminal antibiotics. Plast Reconstr Surg 69:809–812CrossRefGoogle Scholar
  71. 71.
    ClinicalTrials.gov(a). A study of MK0140 in diabetic patients with macular edema. Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT00692614?term=I-vation&rank=1. ClinicalTrials.gov updated this record on 29 January 2013.
  72. 72.
  73. 73.
    Kauper K, Ling V, Elliot S et al (2012) Long-term, sustained intraocular delivery of escalating doses of VEGF antagonist using encapsulated cell technology implant for the treatment of choroidal neovascular diseases. Presented at the Association for Research in Vision and Ophthalmology Annual Meeting, May 2012, Fort Lauderdaule, FLGoogle Scholar
  74. 74.
    ClinicalTrials.gov(b). Safety and efficacy of brimonidine intravitreal implant in patients with geographic atrophy due to age-related macular degeneration (AMD). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT00658619. ClinicalTrials.gov processed this record on 13 March 2013. Accessed 14 Feb 2013.
  75. 75.
    pSivida.com. Products/Thethadur. Available at: http://psivida.com/products-biosilicon.html
  76. 76.
    ClinicalTrials.gov(c). Efficacy and safety of betamethasone micropsheres in patients with diabetic macular edema (Tsubasa). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01411254?term=DE-102&rank=1. ClinicalTrials.gov processed this record on 13 March 2013.
  77. 77.
    ClinicalTrials.gov(d). Efficacy and safety of betamethasone microspheres in patients with macular edema following branch retinal vein occlusion (HIKARI). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01512901?term=DE-102&rank=2. ClinicalTrials.gov processed this record on 29 July 2012.
  78. 78.
    Lim JI, Fung AE, Wieland M, Hung D, Wong V (2011) Sustained-release intravitreal liquid drug delivery using triamcinolone acetonide for cystoid macular edema in retinal vein occlusion. Ophthalmology 118:1416–1422PubMedPubMedCentralGoogle Scholar
  79. 79.
    Wong V, Wood, L (2006) Conveniently Implantable Sustained Release Drug Compositions. US Patent WO2006/039336, 6 April.Google Scholar
  80. 80.
    ClinicalTrials.gov(e). IBI 20089 + Lucentis combo intravitreal injections for treatment of neovascular age-related macular degeneration (AMD) (Icon Combo). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01175395?term=IBI20089&rank=1. ClinicalTrials.gov processed this record on 28 June 2012.
  81. 81.
    ClinicalTrials.gov(f). Safety and tolerability of NOVA63035 “Corticosteroid” in patients with diabetic macular edema secondary to diabetic retinopathy. Available at: http://clinicaltrials.gov/ct2/show/NCT00665106?term=NOVA63035&rank=1. ClinicalTrials.gov processed this record on 15 July 2010.
  82. 82.
    Kuppermann B (2009) Cortiject dexamethasone lipid emulsion for the treatment of diabetic macular edema: a pilot study. The 8th international symposium on ocular pharmacology and therapeutics: 33–31.Google Scholar
  83. 83.
    Novagali.com. Novagli Pharma. Eyeject. Retrieved from URL: http://www.novagali.com/en/our-research/eyeject/
  84. 84.
    Kuno N, Fujii S (2012) Ocular drug delivery systems for the posterior segment: a review. Retina Today May/June:54–59.Google Scholar
  85. 85.
    Sultana Y, Jain R, Aqil M et al (2006) Review of ocular drug delivery. Curr Drug Deliv 3:207–217PubMedCrossRefGoogle Scholar
  86. 86.
    Danckwerts MP, Fassihi A (1991) Implantable controlled release drug delivery systems: a review. Drug Dev Ind Pharm 17:1465–1502CrossRefGoogle Scholar
  87. 87.
    Corcoran S (2006) Drug delivery to the eye. Highlights in Chem Sci 9. Retrieved from URL: http://www.rsc.org/Publishing/ChemScience/Volume/2006/09/nanoparticles_in_the_eye.asp. Accessed 12 Mar 2008.
  88. 88.
    Barbu E, Verestiuc L, Nevell TG et al (2006) Polymeric materials for ophthalmic drug delivery: trends and perspectives. J Mater Chem 16:3439–3443CrossRefGoogle Scholar
  89. 89.
    Choonara YE, Pillay V, Danckwerts MP et al (2010) A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 99:2219–2239PubMedCrossRefGoogle Scholar
  90. 90.
    du Toit LC, Carmichael T, Govender T et al (2014) In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant. Pharm Res 31:607–634PubMedCrossRefGoogle Scholar
  91. 91.
    du Toit LC, Pillay V, Choonara YE et al (2011) Ocular drug delivery – a look towards nanobioadhesives. Expert Opin Drug Deliv 8:71–94PubMedCrossRefGoogle Scholar
  92. 92.
    Gilger BC, Malok GE, Stewart T et al (2000) Effect of an intravitreal cyclosporine implant on experimental uveitis in horses. Vet Immunol Immunopathol 76:239–255PubMedCrossRefGoogle Scholar
  93. 93.
    Li PY, Shih J, Lo R et al (2008) An electrochemical intraocular drug delivery device. Sens Actuat A: Phys 143:41–48 (based on contributions revised from the Technical Digest of the IEEE 20th international conference on Micro Electro Mechanical Systems (MEMS 2007) — MEMS 2007)Google Scholar
  94. 94.
    Saait S, Lo R, Li P-Y et al (2009) Mini drug pump for ophthalmic use. Trans Am Ophthalmol Soc 107:60–70Google Scholar
  95. 95.
    Michelson JB, Nozik RA (1979) Experimental endophthalmitis treated with an implantable osmotic minipump. Arch Ophthalmol 97:1345–1346PubMedCrossRefGoogle Scholar
  96. 96.
    Eliason JA, Maurice DM (1980) An ocular perfusion system. Invest Ophthalmol Vis Sci 19:102–105PubMedGoogle Scholar
  97. 97.
    Miki K, Ohkuma H, Ryan SJ (1984) A method for chronic drug infusion into the eye. Jpn J Ophthalmol 28:140–146PubMedGoogle Scholar
  98. 98.
    Avitabile T, Marano F, Castiglione F et al (2001) Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22:195–200PubMedCrossRefGoogle Scholar
  99. 99.
    Kuppermann BD (2006) Implant delivery of corticosteroids and other pharmacologic agents. Presented at Retina 2006: Emerging new concepts. Held in conjunction with the American Academy of Ophthalmology 2006 Annual Meeting, 10–11 November, Las VegasGoogle Scholar
  100. 100.
    Choonara YE, Pillay V, Carmichael T et al (2006) An in vitro study of the design and development of a novel doughnut-shaped minitablet for intraocular implantation. Int J Pharm 310:15–24PubMedCrossRefGoogle Scholar
  101. 101.
    Choonara YE, Pillay V, Carmichael T et al (2007) Studies on a novel doughnut-shaped Minitablet for intraocular drug delivery. AAPS PharmSciTech 8, Article 118. DOI:  10.1208/pt0804118 Google Scholar
  102. 102.
    Okabe K, Kimura H, Okabe J et al (2003) Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. Invest Ophthalmol Vis Sci 44:2702–2707PubMedCrossRefGoogle Scholar
  103. 103.
    Kato A, Kimura H, Okabe K et al (2004) Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. Invest Ophthalm Vis Sci 45:238–244CrossRefGoogle Scholar
  104. 104.
    Pontes de Carvalho RA, Krausse ML, Murphree AL et al (2006) Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci 47:4532–4539PubMedCrossRefGoogle Scholar
  105. 105.
    Kawashima T, Nagal N, Kaji H et al (2011) A scalable controlled-release device for transscleral drug delivery to the retina. Biomaterials 32:1950–1956PubMedCrossRefGoogle Scholar
  106. 106.
    Thrimawithana TR, Young SA, Bunt CR et al (2011) In-vitro and in-vivo evaluation of carrageenan/methylcellulose polymeric systems for transscleral delivery of macromolecules. Eur J Pharm Sci 44:399–409PubMedCrossRefGoogle Scholar
  107. 107.
    Molokhia SA, Sant H, Simonis J et al (2010) The capsule drug device: novel approach for drug delivery to the eye. Vis Res 50:680–685PubMedCrossRefGoogle Scholar
  108. 108.
    Csaky KG (2007) New developments In the transscleral delivery of ophthalmic agents. The profile of the drug being delivered is as important as the delivery method. Retina Today 3:32–33Google Scholar
  109. 109.
    Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–489PubMedCrossRefGoogle Scholar
  110. 110.
    Karla PK, Ako-Adounvo A-M (2012) Advances in ocular iontophoresis research. Recent Pat Nanomed 2:126–132CrossRefGoogle Scholar
  111. 111.
    Hastings MS, Li SK, Miller DJ et al (2004) Visulex: advancing iontophoresis for effective non-invasive back-to-the-eye therapeutics. J Drug Deliv Technol 4:53–57Google Scholar
  112. 112.
    Haesslein A, Hacker MC, Ueda H et al (2009) Matrix modifications modulate ophthalmic drug delivery from photo-cross-linked poly(propylene fumarate)-based networks. J Biomat Sci 20:49–69CrossRefGoogle Scholar
  113. 113.
    Saliba JB, Gomes Faraco AA, Yoshida MI et al (2008) Development and characterization of an intraocular biodegradable polymer system containing cyclosporine A for the treatment of posterior uveitis. Mater Res 11:207–211CrossRefGoogle Scholar
  114. 114.
    Allergan Inc. EP1750688 (2007) Steroid intraocular implants having an extended sustained release for a period of greater than 2 months (patent filed). Retrieved from URL: https://register.epo.org/espacenet/application?number=EP05744945. Accessed 5 Mar 2008.
  115. 115.
    Hilt JZ, Peppas NA (2005) Microfabricated drug delivery devices. Int J Pharm 306:15–23PubMedCrossRefGoogle Scholar
  116. 116.
    Bawa R (2004) Nanotechnology patents and challenges, ipFrontline.com.Google Scholar
  117. 117.
    Bucolo C, Maltese A, Drago F (2008) When nanotechnology meets the ocular surface. Expert Rev Ophthalmol 3:325–332CrossRefGoogle Scholar
  118. 118.
    Badawi AA, El-Laithy HM, El Qidra RK et al (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31:1040–1049PubMedCrossRefGoogle Scholar
  119. 119.
    Bourges J-L, Gautier SE, Delie F et al (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569PubMedCrossRefGoogle Scholar
  120. 120.
    De Campos AM, Diebold Y, Carvalho EL et al (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21:803–810PubMedCrossRefGoogle Scholar
  121. 121.
    De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168PubMedCrossRefGoogle Scholar
  122. 122.
    de la Fuente M, Csaba N, Garcia-Fuentes M et al (2008) Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine 3:845–857PubMedCrossRefGoogle Scholar
  123. 123.
    Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5PubMedCrossRefGoogle Scholar
  124. 124.
    Sanchez A, Alonso MJ (2006) Nanoparticular carriers for ocular drug delivery. In: Torchilin VP (ed) Nanoparticulates as drug carriers. Imperial College Press, London, pp 649–673CrossRefGoogle Scholar
  125. 125.
    Mainardes RM, Urban MC, Cinto PO et al (2005) Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets 6:363–371PubMedCrossRefGoogle Scholar
  126. 126.
    Nagarwal RC, Kant S, Singh PN et al (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13PubMedCrossRefGoogle Scholar
  127. 127.
    Araújo J, Vega E, Lopes C et al (2009) Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces 72:48–56PubMedCrossRefGoogle Scholar
  128. 128.
    Bloquel C, Bourges JL, Touchard E et al (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58:1224–1242PubMedCrossRefGoogle Scholar
  129. 129.
    Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649PubMedCrossRefGoogle Scholar
  130. 130.
    Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151PubMedCrossRefGoogle Scholar
  131. 131.
    Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120PubMedCrossRefGoogle Scholar
  132. 132.
    Vasir JK, Reddy MK, Labhasetwar V (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64CrossRefGoogle Scholar
  133. 133.
    Carafa M, Santucci E, Alhaique F et al (1998) Preparation and properties of new unilamellar non-ionic surfactant vesicles. Int J Pharm 160:51–59CrossRefGoogle Scholar
  134. 134.
    Svenson S, Tomalia D (2005) Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 57:2106–2129PubMedCrossRefGoogle Scholar
  135. 135.
    Gaudana R, Jwala J, Boddu SHS et al (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216PubMedCrossRefGoogle Scholar
  136. 136.
    Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609PubMedCrossRefGoogle Scholar
  137. 137.
    Kaur IP, Aggarwal D, Singh H et al (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472PubMedCrossRefGoogle Scholar
  138. 138.
    Amrite AC, Edelhauser HF, Singh SR et al (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160PubMedPubMedCentralGoogle Scholar
  139. 139.
    Cheruvu NP, Amrite AC, Kompella UB (2008) Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci 49:333–341PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cheruvu NP, Amrite AC, Kompella UB (2009) Effect of diabetes on transscleral delivery of celecoxib. Pharm Res 26:404–414PubMedCrossRefGoogle Scholar
  141. 141.
    Peeters L, Lentacker I, Vandenbroucke RE et al (2008) Can ultrasound solve the transport barrier of the neural retina? Pharm Res 25:2657–2665PubMedCrossRefGoogle Scholar
  142. 142.
    Calvo P, Remuñán-López C, Vila-Jato JL et al (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132CrossRefGoogle Scholar
  143. 143.
    Calvo P, Vila-Jato JL, Alonso MJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50CrossRefGoogle Scholar
  144. 144.
    Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1(8):328–335CrossRefGoogle Scholar
  145. 145.
    Lang JC (1995) Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 16:39–43CrossRefGoogle Scholar
  146. 146.
    Meadows DL, Paugh JR, Joshi A et al (2002) A novel method to evaluate residence time in humans using a nonpenetrating fluorescent tracer. Invest Ophthalmol Vis Sci 43:1032–1039PubMedGoogle Scholar
  147. 147.
    Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 16:61–73CrossRefGoogle Scholar
  148. 148.
    Dobrovolskaia MA, Aggarwal P, Hall JB et al (2008) Preclinical studies to understand nanoparticles interaction with the immune system and its potential effects on nanoparticles biodistribution. Mol Pharmacol 5:487–495CrossRefGoogle Scholar
  149. 149.
    Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478PubMedCrossRefGoogle Scholar
  150. 150.
    Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603PubMedCrossRefGoogle Scholar
  152. 152.
    Couvreur P, Tulkenst P, Roland M et al (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326PubMedCrossRefGoogle Scholar
  153. 153.
    Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 30:1193–1208CrossRefGoogle Scholar
  155. 155.
    Hillaireau H, Couvreur C (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896PubMedCrossRefGoogle Scholar
  156. 156.
    Harush-Frenkel O, Altschuler Y, Benita S (2008) Nanoparticle-cell interactions: drug delivery implications. Crit Rev Ther Drug Carrier Syst 25:485–544PubMedCrossRefGoogle Scholar
  157. 157.
    Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedCrossRefGoogle Scholar
  158. 158.
    Saishin Y, Silva RL, Saishin Y et al (2003) Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci 44:4989–4993PubMedCrossRefGoogle Scholar
  159. 159.
    Barcia E, Herrero-Vanrell R, Díez A et al (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89:238–245PubMedCrossRefGoogle Scholar
  160. 160.
    Merodio M, Arnedo A, Renedo MJ et al (2001) Ganciclovir-loaded nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259PubMedCrossRefGoogle Scholar
  161. 161.
    Merodio M, Espuelas MS, Mirshahi M et al (2002) Efficacy of ganciclovir-loaded nanoparticles in human cytomegalovirus (HCMV)-infected cells. J Drug Target 10:231–238PubMedCrossRefGoogle Scholar
  162. 162.
    Merodio M, Irache JM, Valamanesh F et al (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594PubMedCrossRefGoogle Scholar
  163. 163.
    Irache JM, Merodio M, Arnedo A et al (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305PubMedCrossRefGoogle Scholar
  164. 164.
    Bejjani RA, BenEzra D, Cohen H et al (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132PubMedGoogle Scholar
  165. 165.
    Normand N, Valamanesh F, Savoldelli M et al (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11:184–191PubMedGoogle Scholar
  166. 166.
    Conley SM, Naash MI (2010) Nanoparticles for retinal gene therapy. Prog Retin Eye Res 29(5):376–397PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    de Kozak Y, Andrieux K, Villarroya H et al (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712PubMedCrossRefGoogle Scholar
  168. 168.
    El-Samaligy MS, Rojanasakul Y, Charlton JF et al (1996) Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit’s eye. Drug Deliv 3:93–97CrossRefGoogle Scholar
  169. 169.
    Christoforidis JB, Chang S, Jiang A et al (2012) Intravitreal devices for the treatment of vitreous inflammation. Mediators of Inflammation 2012 (ID 126463):8 pages.Google Scholar
  170. 170.
    Kadam RS, Tyagi P, Edelhauser HF et al (2012) Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide. Int J Pharm 434:140–147PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Panda JJ, Yandrapu S, Kadam RS et al (2013) Self-assembled phenylalanine-α, β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor. J Control Release 172:1151–1160PubMedCrossRefGoogle Scholar
  172. 172.
    Gan L, Wang J, Liu J et al (2013) HA-modified core–shell liponanoparticles for efficient intravitreal drug delivery. J Control Release 172:e48CrossRefGoogle Scholar
  173. 173.
    Camelo S, Lajavardi L, Bochot A et al (2009) Protective effect of intravitreal injection of vasoactive intestinal peptide-loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther 25:9–21PubMedCrossRefGoogle Scholar
  174. 174.
    Lajavardi L, Bochot A, Camelo S et al (2007) Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal peptide encapsulated in liposomes. Invest Ophthalmol Vis Sci 48:3230–3238PubMedCrossRefGoogle Scholar
  175. 175.
    Ulbrich W, Lamprecht A (2010) Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface 7(Suppl 1):S55–S66PubMedCrossRefGoogle Scholar
  176. 176.
    Lajavardi L, Camelo S, Agnely F et al (2009) New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 139:22–30PubMedCrossRefGoogle Scholar
  177. 177.
    Haghjou N, Soheilian M, Abdekhodaie MJ (2011) Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalm Vis Res 6:317–329Google Scholar
  178. 178.
    Ryu M, Nakazawa T, Akagi T et al (2011) Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release 151:65–73PubMedCrossRefGoogle Scholar
  179. 179.
    Sakai T, Kohno H, Ishihara T et al (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82:657–663PubMedCrossRefGoogle Scholar
  180. 180.
    Hashida N, Ohguro N, Yamazaki N et al (2008) High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp Eye Res 86:138–149PubMedCrossRefGoogle Scholar
  181. 181.
    McEver RP (1992) Leukocyte-endothelial cell interactions. Curr Opin Cell Biol 4:840–849PubMedCrossRefGoogle Scholar
  182. 182.
    Foxall C, Watson SR, Dowbenko D et al (1992) The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis (x) oligosaccharide. J Cell Biol 117:895–902PubMedCrossRefGoogle Scholar
  183. 183.
    Polley MJ, Phillips ML, Wayner E et al (1991) CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis X. Proc Natl Acad Sci U S A 88:6224–6228PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Zeimer R, Goldberg MF (2001) Novel ophthalmic therapeutic modalities based on noninvasive light-targeted drug delivery to the posterior pole of the eye. Adv Drug Deliv Rev 52:49–61PubMedCrossRefGoogle Scholar
  185. 185.
    Ideta R, Tasaka F, Jang W-D et al (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431PubMedCrossRefGoogle Scholar
  186. 186.
    Paasonen L, Laaksonen T, Johans C et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release 11:86–93CrossRefGoogle Scholar
  187. 187.
    Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient nonviral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1(1):e38.Google Scholar
  188. 188.
    Edelhauser HF, Rowe-Rendleman CL, Robinson MR et al (2010) Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci 51(11):5403–5420PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Jiang J, Moore JS, Edelhauser HF (2009) Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res 26:395–403PubMedCrossRefGoogle Scholar
  190. 190.
    Sustained release ocular drug delivery systems market, 2014–2024. Press Release, 15 May 2014. http://www.prnewswire.com/news-releases/sustained-release-ocular-drug-delivery-systems-market-2014-2024-259368521.html
  191. 191.
    Pasadhika S, Suhler EB, Cunningham ET (2010) Use of biologic agents in the treatment of uveitis: these potent new agents may help some patients who are refractory to more traditional immunosuppressive therapies. Rev Ophthalmol 10(1). http://www.reviewofophthalmology.com/content/d/retinal_insider/i/1208/c/22770/
  192. 192.
    Kraus CL, Culican SM (2012) Use of biologic agents in ocular manifestations of rheumatic disease. Int J Rheumatol 2012(Article ID 203819):6 pages.Google Scholar
  193. 193.
    Bushell-Embling (2014) pSivida implant provides sustained antibody release. Medical devices, 08 May 2014. http://lifescientist.com.au/content/biotechnology/news/psivida-implant-provides-sustained-antibody-release-28600494#sthash.Rv8YjuQq.dpuf
  194. 194.
    Ullrich F, Bergeles C, Pokki J et al (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54:2853–2863PubMedCrossRefGoogle Scholar
  195. 195.
    Helzner J (ed) (2010) Sustained-release drugs: heralds of the future. 3 January 2010. http://www.ophthalmologymanagement.com/articleviewer.aspx?articleid=104070

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Viness Pillay
    • 1
    Email author
  • Yahya E. Choonara
    • 1
  • Lisa C. du Toit
    • 1
  1. 1.Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic SciencesFaculty of Health Sciences, University of the WitwatersrandJohannesburg, ParktownSouth Africa

Personalised recommendations