Barriers to Glaucoma Drug Delivery and Resolving the Challenges Using Nanotechnology

  • Morgan V. FedorchakEmail author


As with other diseases of the eye, glaucoma patients face a number of challenges to efficient drug delivery such as low bioavailability due to transport barriers in the eye. It is important to note, however, that the pathophysiology of glaucoma, though not well understood, makes it a particularly challenging disease to address using traditional drug delivery techniques. Researchers have therefore begun to investigate approaches using nanotechnology, and in particular nanoscale biomaterials, to improve upon the delivery of approved and pipeline therapeutic agents. In addition to well-characterized vehicles like liposomes and polymer formulations, a wide variety of other devices like drug-loaded contact lenses and intraocular implants are in development. The primary goal of these drug delivery systems is to improve bioavailability, which may lead to increased adherence to treatment and decreased systemic side effects. Secondary goals like imaging and anti-scarring applications are also relevant to this widespread, vision-threatening disease.


Glaucoma Drug delivery Bioavailability Biomaterial Mucoadhesion Emulsion Nanoparticle 


  1. 1.
    Egan P, Harris A, Siesky B, Abrams-Tobe L, Gerber AL, Park J, Holland S, Kim NJ, Januleviciene I (2014) Comparison of intraocular pressure in glaucoma subjects treated with Xalatan((R)) versus generic latanoprost. Acta Ophthalmol 92(5):e415–e416. doi: 10.1111/aos.12321 PubMedCrossRefGoogle Scholar
  2. 2.
    Kim NJ, Harris A, Gerber A, Tobe LA, Amireskandari A, Huck A, Siesky B (2014) Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine. Br J Ophthalmol 98(4):427–431. doi: 10.1136/bjophthalmol-2013-304028 PubMedCrossRefGoogle Scholar
  3. 3.
    Pita-Thomas DW, Goldberg JL (2013) Nanotechnology and glaucoma: little particles for a big disease. Curr Opin Ophthalmol 24(2):130–135. doi: 10.1097/ICU.0b013e32835cfe92 PubMedCrossRefGoogle Scholar
  4. 4.
    Bagnis A, Papadia M, Scotto R, Traverso CE (2011) Current and emerging medical therapies in the treatment of glaucoma. Expert Opin Emerg Drugs 16(2):293–307. doi: 10.1517/14728214.2011.563733 PubMedCrossRefGoogle Scholar
  5. 5.
    Wang SK, Chang RT (2014) An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol 8:883–890. doi: 10.2147/OPTH.S41000 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu JH, Zhang SH, Gao FJ, Lei Y, Chen XY, Gao F, Zhang SJ, Sun XH (2013) RNAi screening identifies GSK3beta as a regulator of DRP1 and the neuroprotection of lithium chloride against elevated pressure involved in downregulation of DRP1. Neurosci Lett 554:99–104. doi: 10.1016/j.neulet.2013.08.057 PubMedCrossRefGoogle Scholar
  7. 7.
    Dey S, Mitra AK (2005) Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv 2(2):201–204. doi: 10.1517/17425247.2.2.201 PubMedCrossRefGoogle Scholar
  8. 8.
    Crooke A, Colligris B, Pintor J (2012) Update in glaucoma medicinal chemistry: emerging evidence for the importance of melatonin analogues. Curr Med Chem 19(21):3508–3522PubMedCrossRefGoogle Scholar
  9. 9.
    Yucel YH, Johnston MG, Ly T, Patel M, Drake B, Gumus E, Fraenkl SA, Moore S, Tobbia D, Armstrong D, Horvath E, Gupta N (2009) Identification of lymphatics in the ciliary body of the human eye: a novel “uveolymphatic” outflow pathway. Exp Eye Res 89(5):810–819. doi: 10.1016/j.exer.2009.08.010 PubMedCrossRefGoogle Scholar
  10. 10.
    Gemenetzi M, Yang Y, Lotery AJ (2012) Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond) 26(3):355–369. doi: 10.1038/eye.2011.309 CrossRefGoogle Scholar
  11. 11.
    Quigley HA (2011) Glaucoma. Lancet 377(9774):1367–1377. doi: 10.1016/S0140-6736(10)61423-7, Epub 2011/04/02. S0140-6736(10)61423-7 [pii]PubMedCrossRefGoogle Scholar
  12. 12.
    Morrison JC, Pollack IP (2011) Glaucoma: science and practice. Thieme, New YorkGoogle Scholar
  13. 13.
    Campbell JH, Schwartz GF, LaBounty B, Kowalski JW, Patel VD (2014) Patient adherence and persistence with topical ocular hypotensive therapy in real-world practice: a comparison of bimatoprost 0.01% and travoprost Z 0.004% ophthalmic solutions. Clin Ophthalmol 8:927–935. doi: 10.2147/OPTH.S49467 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kashiwagi K, Furuya T (2014) Persistence with topical glaucoma therapy among newly diagnosed Japanese patients. Jpn J Ophthalmol 58(1):68–74. doi: 10.1007/s10384-013-0284-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta R, Patil B, Shah BM, Bali SJ, Mishra SK, Dada T (2012) Evaluating eye drop instillation technique in glaucoma patients. J Glaucoma 21(3):189–192. doi: 10.1097/IJG.0b013e31820bd2e1 PubMedCrossRefGoogle Scholar
  16. 16.
    Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R, Group CS (2011) Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology 118(9):1766–1773. doi: 10.1016/j.ophtha.2011.01.047 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Quigley HA, Vitale S (1997) Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 38(1):83–91PubMedGoogle Scholar
  18. 18.
    Painter SL, Mead AL (2014) Patient experience of the transition from Xalatan to generic latanoprost. Eye (Lond) 28(7):911. doi: 10.1038/eye.2014.71 CrossRefGoogle Scholar
  19. 19.
    Cantor LB (2006) Brimonidine in the treatment of glaucoma and ocular hypertension. Ther Clin Risk Manag 2(4):337–346PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Moisseiev E, Kurtz S, Lazar M, Shemesh G (2013) Intraocular pressure reduction using a fixed combination of timolol maleate 0.5% and brimonidine tartrate 0.2% administered three times daily. Clin Ophthalmol 7:1269–1273. doi: 10.2147/OPTH.S47760 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Klein R, Klein BE (2013) The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci 54(14):ORSF5–ORSF13. doi: 10.1167/iovs.13-12789 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Waterman H, Evans JR, Gray TA, Henson D, Harper R (2013) Interventions for improving adherence to ocular hypotensive therapy. Cochrane Database Syst Rev 4:CD006132. doi: 10.1002/14651858.CD006132.pub3 Google Scholar
  23. 23.
    Lacey J, Cate H, Broadway DC (2009) Barriers to adherence with glaucoma medications: a qualitative research study. Eye (Lond) 23(4):924–932. doi: 10.1038/eye.2008.103 CrossRefGoogle Scholar
  24. 24.
    Ghate D, Edelhauser HF (2008) Barriers to glaucoma drug delivery. J Glaucoma 17(2):147–156. doi: 10.1097/IJG.0b013e31814b990d PubMedCrossRefGoogle Scholar
  25. 25.
    Rees G, Leong O, Crowston JG, Lamoureux EL (2010) Intentional and unintentional nonadherence to ocular hypotensive treatment in patients with glaucoma. Ophthalmology 117(5):903–908. doi: 10.1016/j.ophtha.2009.10.038 PubMedCrossRefGoogle Scholar
  26. 26.
    Pisella PJ, Pouliquen P, Baudouin C (2002) Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br J Ophthalmol 86(4):418–423PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Robin AL, Burnstein Y (1998) Selectivity of site of action and systemic effects of topical alpha agonists. Curr Opin Ophthalmol 9(2):30–33PubMedCrossRefGoogle Scholar
  28. 28.
    Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D, Ilia P (2014) Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection. Int J Neurosci. doi: 10.3109/00207454.2013.878340 PubMedGoogle Scholar
  29. 29.
    Roos JC, Haridas AS (2014) Prolonged mydriasis after inadvertent topical administration of the calcium channel antagonist amlodipine: implications for glaucoma drug development. Cutan Ocul Toxicol. doi: 10.3109/15569527.2014.896016 PubMedGoogle Scholar
  30. 30.
    Greenfield DS, Liebmann JM, Ritch R (1997) Brimonidine: a new alpha2-adrenoreceptor agonist for glaucoma treatment. J Glaucoma 6(4):250–258PubMedCrossRefGoogle Scholar
  31. 31.
    Sy GY, Bruban V, Bousquet P, Feldman J (2002) Nitric oxide discriminates the sites and mechanisms of action of centrally acting anti-hypertensive drugs in rabbits. Neuropharmacology 43(8):1330–1338PubMedCrossRefGoogle Scholar
  32. 32.
    Dong CJ, Guo Y, Agey P, Wheeler L, Hare WA (2008) Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci 49(10):4515–4522. doi: 10.1167/iovs.08-2078 PubMedCrossRefGoogle Scholar
  33. 33.
    Fujita Y, Sato A, Yamashita T (2013) Brimonidine promotes axon growth after optic nerve injury through Erk phosphorylation. Cell Death Disease 4:e763. doi: 10.1038/cddis.2013.298 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schoenwald RW (1997) Ocular pharmacokinetics. In: Z TJ (ed) Textbook of ocular pharmacology., pp 119–138Google Scholar
  35. 35.
    Ahmed I, Gokhale RD, Shah MV, Patton TF (1987) Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J Pharm Sci 76(8):583–586PubMedCrossRefGoogle Scholar
  36. 36.
    Sasaki H, Igarashi Y, Nagano T, Nishida K, Nakamura J (1995) Different effects of absorption promoters on corneal and conjunctival penetration of ophthalmic beta-blockers. Pharm Res 12(8):1146–1150PubMedCrossRefGoogle Scholar
  37. 37.
    Korte JM, Kaila T, Saari KM (2002) Systemic bioavailability and cardiopulmonary effects of 0.5% timolol eyedrops. Graefes Arch Clin Exp Ophthalmol 240(6):430–435. doi: 10.1007/s00417-002-0462-2 PubMedCrossRefGoogle Scholar
  38. 38.
    Lama PJ (2002) Systemic adverse effects of beta-adrenergic blockers: an evidence-based assessment. Am J Ophthalmol 134(5):749–760PubMedCrossRefGoogle Scholar
  39. 39.
    Mishima S, Gasset A, Klyce SD Jr, Baum JL (1966) Determination of tear volume and tear flow. Invest Ophthalmol 5(3):264–276PubMedGoogle Scholar
  40. 40.
    Frenkel MP, Haji SA, Frenkel RE (2010) Effect of prophylactic intraocular pressure-lowering medication on intraocular pressure spikes after intravitreal injections. Arch Ophthalmol 128(12):1523–1527. doi: 10.1001/archophthalmol.2010.297 PubMedCrossRefGoogle Scholar
  41. 41.
    Semeraro F, Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C (2014) Systemic thromboembolic adverse events in patients treated with intravitreal anti-VEGF drugs for neovascular age-related macular degeneration: an overview. Expert Opin Drug Saf 13(6):785–802. doi: 10.1517/14740338.2014.911284 PubMedGoogle Scholar
  42. 42.
    Fedorchak MV, Conner IP, Medina CA, Wingard JB, Schuman JS, Little SR (2014) 28-day intraocular pressure reduction with a single dose of brimonidine tartrate-loaded microspheres. Exp Eye Res 125:210–216. doi: 10.1016/j.exer.2014.06.013 PubMedCrossRefGoogle Scholar
  43. 43.
    Liu JH, Zhang X, Kripke DF, Weinreb RN (2003) Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci 44(4):1586–1590PubMedCrossRefGoogle Scholar
  44. 44.
    Mansouri K, Weinreb RN, Liu JH (2012) Effects of aging on 24-hour intraocular pressure measurements in sitting and supine body positions. Invest Ophthalmol Vis Sci 53(1):112–116. doi: 10.1167/iovs.11-8763 PubMedCrossRefGoogle Scholar
  45. 45.
    Wilensky JT, Gieser DK, Dietsche ML, Mori MT, Zeimer R (1993) Individual variability in the diurnal intraocular pressure curve. Ophthalmology 100(6):940–944PubMedCrossRefGoogle Scholar
  46. 46.
    Lee YR, Kook MS, Joe SG, Na JH, Han S, Kim S, Shin CJ (2012) Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Invest Ophthalmol Vis Sci 53(2):881–887. doi: 10.1167/iovs.11-7846 PubMedCrossRefGoogle Scholar
  47. 47.
    Renard E, Palombi K, Gronfier C, Pepin JL, Noel C, Chiquet C, Romanet JP (2010) Twenty-four hour (Nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51(2):882–889. doi: 10.1167/iovs.09-3668 PubMedCrossRefGoogle Scholar
  48. 48.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713, discussion 829–30PubMedCrossRefGoogle Scholar
  49. 49.
    Mohammadi-Samani S, Taghipour B (2014) PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol. doi: 10.3109/10837450.2014.882940 PubMedGoogle Scholar
  50. 50.
    Tanaka S, Watanabe M, Inatomi S, Umeda K, Yoshida K, Ohguro I, Ohguro H (2014) Effects of several anti-glaucoma medications on the circadian intraocular pressure fluctuations in patients with primary open-angle glaucoma. J Ocul Pharmacol Ther 30(1):12–20. doi: 10.1089/jop.2013.0121 PubMedCrossRefGoogle Scholar
  51. 51.
    Hughes E, Spry P, Diamond J (2003) 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma 12(3):232–236PubMedCrossRefGoogle Scholar
  52. 52.
    Ho LC, Conner IP, Do CW, Kim SG, Wu EX, Wollstein G, Schuman JS, Chan KC (2014) In vivo assessment of aqueous humor dynamics upon chronic ocular hypertension and hypotensive drug treatment using gadolinium-enhanced MRI. Invest Ophthalmol Vis Sci 55(6):3747–3757. doi: 10.1167/iovs.14-14263 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tam AL, Gupta N, Zhang Z, Yucel YH (2011) Quantum dots trace lymphatic drainage from the mouse eye. Nanotechnology 22(42):425101. doi: 10.1088/0957-4484/22/42/425101 PubMedCrossRefGoogle Scholar
  54. 54.
    Tam AL, Gupta N, Zhang Z, Yucel YH (2013) Latanoprost stimulates ocular lymphatic drainage: an in vivo nanotracer study. Transl Vis Sci Technol 2(5):3. doi: 10.1167/tvst.2.5.3 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913. doi: 10.3109/1061186X.2013.837469 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dube A, Lemmer Y, Hayeshi R, Balogun M, Labuschagne P, Swai H, Kalombo L (2013) State of the art and future directions in nanomedicine for tuberculosis. Expert Opin Drug Deliv 10(12):1725–1734. doi: 10.1517/17425247.2014.846905 PubMedCrossRefGoogle Scholar
  57. 57.
    Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198. doi: 10.1016/j.preteyeres.2013.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 150(2):144–162.e2. doi: 10.1016/j.ajo.2010.03.019 PubMedCrossRefGoogle Scholar
  59. 59.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. doi: 10.1016/j.jconrel.2012.01.043, Epub 2012/02/23PubMedCrossRefGoogle Scholar
  60. 60.
    Greaves JL, Wilson CG (1993) Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliver Rev 11(3):349–383. doi: 10.1016/0169-409x(93)90016-W CrossRefGoogle Scholar
  61. 61.
    Cohen S, Martin A, Sall K (2014) Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose. Clin Ophthalmol 8:157–164. doi: 10.2147/OPTH.S53822 PubMedGoogle Scholar
  62. 62.
    Jansook P, Stefansson E, Thorsteinsdottir M, Sigurdsson BB, Kristjansdottir SS, Bas JF, Sigurdsson HH, Loftsson T (2010) Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm 76(2):208–214. doi: 10.1016/j.ejpb.2010.07.005 PubMedCrossRefGoogle Scholar
  63. 63.
    Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, La Rotonda MI (2008) A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm 70(1):199–206. doi: 10.1016/j.ejpb.2008.04.025 PubMedCrossRefGoogle Scholar
  64. 64.
    Uusitalo H, Kahonen M, Ropo A, Maenpaa J, Bjarnhall G, Hedenstrom H, Turjanmaa V (2006) Improved systemic safety and risk-benefit ratio of topical 0.1% timolol hydrogel compared with 0.5% timolol aqueous solution in the treatment of glaucoma. Graefes Arch Clin Exp Ophthalmol 244(11):1491–1496. doi: 10.1007/s00417-006-0328-0 PubMedCrossRefGoogle Scholar
  65. 65.
    Wu W, Li J, Wu L, Wang B, Wang Z, Xu Q, Xin H (2013) Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS PharmSciTech 14(3):1063–1071. doi: 10.1208/s12249-013-9997-2 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tuomela A, Liu P, Puranen J, Ronkko S, Laaksonen T, Kalesnykas G, Oksala O, Ilkka J, Laru J, Jarvinen K, Hirvonen J, Peltonen L (2014) Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm 467(1–2):34–41. doi: 10.1016/j.ijpharm.2014.03.048 PubMedCrossRefGoogle Scholar
  67. 67.
    Kaur IP, Smitha R (2002) Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 28(4):353–369. doi: 10.1081/DDC-120002997 PubMedCrossRefGoogle Scholar
  68. 68.
    Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2010) Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18(4):292–302. doi: 10.3109/10611860903450023, Epub 2009/12/01PubMedCrossRefGoogle Scholar
  69. 69.
    Lin HR, Chang PC (2013) Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater 101(5):689–699. doi: 10.1002/jbm.b.32871 PubMedCrossRefGoogle Scholar
  70. 70.
    Andres-Guerrero V, Vicario-de-la-Torre M, Molina-Martinez IT, Benitez-del-Castillo JM, Garcia-Feijoo J, Herrero-Vanrell R (2011) Comparison of the in vitro tolerance and in vivo efficacy of traditional timolol maleate eye drops versus new formulations with bioadhesive polymers. Invest Ophthalmol Vis Sci 52(6):3548–3556. doi: 10.1167/iovs.10-6338 PubMedCrossRefGoogle Scholar
  71. 71.
    Andres-Guerrero V, Molina-Martinez IT, Peral A, de las Heras B, Pintor J, Herrero-Vanrell R (2011) The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analogue, 5-MCA-NAT, in rabbit eyes. Invest Ophthalmol Vis Sci 52(3):1507–1515. doi: 10.1167/iovs.10-6099 PubMedCrossRefGoogle Scholar
  72. 72.
    Vandamme TF (2002) Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res 21(1):15–34PubMedCrossRefGoogle Scholar
  73. 73.
    Sivakumar M, Tang SY, Tan KW (2014) Cavitation technology – a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason Sonochem 21(6):2069–2083. doi: 10.1016/j.ultsonch.2014.03.025 PubMedCrossRefGoogle Scholar
  74. 74.
    Benita S, Levy MY (1993) Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci 82(11):1069–1079PubMedCrossRefGoogle Scholar
  75. 75.
    Ying L, Tahara K, Takeuchi H (2013) Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration: effect of emulsion formulations and surface modification. Int J Pharm 453(2):329–335. doi: 10.1016/j.ijpharm.2013.06.024 PubMedCrossRefGoogle Scholar
  76. 76.
    Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2009) Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 10(3):808–819. doi: 10.1208/s12249-009-9268-4 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Linden C (2001) Therapeutic potential of prostaglandin analogues in glaucoma. Expert Opin Investig Drugs 10(4):679–694. doi: 10.1517/13543784.10.4.679 PubMedCrossRefGoogle Scholar
  78. 78.
    Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 8:495–503. doi: 10.2147/IJN.S30725 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y (2013) Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today 18(5–6):290–297. doi: 10.1016/j.drudis.2012.10.005 PubMedCrossRefGoogle Scholar
  80. 80.
    Swaminathan J, Ehrhardt C (2012) Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv 9(12):1489–1503. doi: 10.1517/17425247.2012.735658 PubMedCrossRefGoogle Scholar
  81. 81.
    Pisal PB, Joshi MA, Padamwar MN, Patil SS, Pokharkar VB (2014) Probing influence of methodological variation on active loading of acetazolamide into nanoliposomes: biophysical, in vitro, ex vivo, in vivo and rheological investigation. Int J Pharm 461(1–2):82–88. doi: 10.1016/j.ijpharm.2013.11.034 PubMedCrossRefGoogle Scholar
  82. 82.
    Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, Tam KC, Wong TT, Venkatraman SS (2014) Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano 8(1):419–429. doi: 10.1021/nn4046024 PubMedCrossRefGoogle Scholar
  83. 83.
    Chong RS, Su DH, Tsai A, Jiang Y, Htoon HM, Lamoureux EL, Aung T, Wong TT (2013) Patient acceptance and attitude toward an alternative method of subconjunctival injection for the medical treatment of glaucoma. J Glaucoma 22(3):190–194. doi: 10.1097/IJG.0b013e318237c6c4 PubMedCrossRefGoogle Scholar
  84. 84.
    Bertram JP, Saluja SS, McKain J, Lavik EB (2009) Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months. J Microencapsul 26(1):18–26. doi: 10.1080/02652040802095250 PubMedCrossRefGoogle Scholar
  85. 85.
    Amrite AC, Edelhauser HF, Singh SR, Kompella UB (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB (2012) Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9):7595–7606. doi: 10.1021/nn301873v, Epub 2012/08/11PubMedCrossRefGoogle Scholar
  87. 87.
    Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS (2013) Nanoparticles in the ocular drug delivery. Int J Ophthalmol 6(3):390–396. doi: 10.3980/j.issn.2222-3959.2013.03.25 PubMedPubMedCentralGoogle Scholar
  88. 88.
    Turturro S, Sunoqrot S, Ying H, Hong S, Yue BY (2013) Sustained release of matrix metalloproteinase-3 to trabecular meshwork cells using biodegradable PLGA microparticles. Mol Pharm 10(8):3023–3032. doi: 10.1021/mp4001052 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martinez IT, Young MJ, Herrero-Vanrell R (2011) Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release 156(1):92–100. doi: 10.1016/j.jconrel.2011.06.023 PubMedCrossRefGoogle Scholar
  90. 90.
    Ward MS, Khoobehi A, Lavik EB, Langer R, Young MJ (2007) Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres. J Pharm Sci 96(3):558–568. doi: 10.1002/jps.20629 PubMedCrossRefGoogle Scholar
  91. 91.
    Xiao JH, Zhang MN (2010) Neuroprotection of retinal ganglion cells with GDNF-Loaded biodegradable microspheres in experimental glaucoma. Int J Ophthalmol 3(3):189–191. doi: 10.3980/j.issn.2222-3959.2010.03.01 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007. doi: 10.1016/J.Polymer.2008.01.027 CrossRefGoogle Scholar
  93. 93.
    Gauvin R, Parenteau-Bareil R, Dokmeci MR, Merryman WD, Khademhosseini A (2012) Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):235–246. doi: 10.1002/wnan.171 PubMedCrossRefGoogle Scholar
  94. 94.
    Yang H, Leffler CT (2013) Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther 29(2):166–172. doi: 10.1089/jop.2012.0197 PubMedCrossRefGoogle Scholar
  95. 95.
    Joglekar M, Trewyn BG (2013) Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 8(8):931–945. doi: 10.1002/biot.201300073 PubMedCrossRefGoogle Scholar
  96. 96.
    Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45. doi: 10.1016/j.ejpb.2007.02.025 PubMedCrossRefGoogle Scholar
  97. 97.
    Cheng YH, Hung KH, Tsai TH, Lee CJ, Ku RY, Chiu AW, Chiou SH, Liu CJ (2014) Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater. doi: 10.1016/j.actbio.2014.05.031.PubMed PubMedCentralGoogle Scholar
  98. 98.
    Abd El-Rehim HA, Swilem AE, Klingner A, el Hegazy SA, Hamed AA (2013) Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by gamma radiation. Biomacromolecules 14(3):688–698. doi: 10.1021/bm301742m PubMedCrossRefGoogle Scholar
  99. 99.
    Hsiao MH, Chiou SH, Larsson M, Hung KH, Wang YL, Liu CJ, Liu DM (2014) A temperature-induced and shear-reversible assembly of latanoprost-loaded amphiphilic chitosan colloids: characterization and in vivo glaucoma treatment. Acta Biomater 10(7):3188–3196. doi: 10.1016/j.actbio.2014.03.016 PubMedCrossRefGoogle Scholar
  100. 100.
    Rauck BM, Friberg TR, Medina Mendez CA, Park D, Shah V, Bilonick RA, Wang Y (2014) Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci 55(1):469–476. doi: 10.1167/iovs.13-13120 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wang CH, Hwang YS, Chiang PR, Shen CR, Hong WH, Hsiue GH (2012) Extended release of bevacizumab by thermosensitive biodegradable and biocompatible hydrogel. Biomacromolecules 13(1):40–48. doi: 10.1021/bm2009558 PubMedCrossRefGoogle Scholar
  102. 102.
    Peng CC, Ben-Shlomo A, Mackay EO, Plummer CE, Chauhan A (2012) Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr Eye Res 37(3):204–211. doi: 10.3109/02713683.2011.630154 PubMedCrossRefGoogle Scholar
  103. 103.
    Karlgard CC, Wong NS, Jones LW, Moresoli C (2003) In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. Int J Pharm 257(1–2):141–151PubMedCrossRefGoogle Scholar
  104. 104.
    Ciolino JB, Stefanescu CF, Ross AE, Salvador-Culla B, Cortez P, Ford EM, Wymbs KA, Sprague SL, Mascoop DR, Rudina SS, Trauger SA, Cade F, Kohane DS (2014) In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials 35(1):432–439. doi: 10.1016/j.biomaterials.2013.09.032 PubMedCrossRefGoogle Scholar
  105. 105.
    Kim HJ, Zhang K, Moore L, Ho D (2014) Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8(3):2998–3005. doi: 10.1021/nn5002968 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A (2013) Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release 165(1):82–89. doi: 10.1016/j.jconrel.2012.10.010 PubMedCrossRefGoogle Scholar
  107. 107.
    Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C (2005) Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26(11):1293–1298. doi: 10.1016/j.biomaterials.2004.04.030 PubMedCrossRefGoogle Scholar
  108. 108.
    Ramamoorthy P, Nichols JJ (2014) Compliance factors associated with contact lens-related dry eye. Eye Contact Lens 40(1):17–22. doi: 10.1097/ICL.0000000000000009 PubMedCrossRefGoogle Scholar
  109. 109.
    Choonara YE, Pillay V, Danckwerts MP, Carmichael TR, du Toit LC (2010) A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 99(5):2219–2239. doi: 10.1002/jps.21987 PubMedCrossRefGoogle Scholar
  110. 110.
    Simha A, Braganza A, Abraham L, Samuel P, Lindsley K (2013) Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev 10:CD007920. doi: 10.1002/14651858.CD007920.pub2 PubMedCentralGoogle Scholar
  111. 111.
    Payne AJ, Kaja S, Sabates NR, Koulen P (2013) A case for neuroprotection in ophthalmology: developments in translational research. Mo Med 110(5):429–436PubMedPubMedCentralGoogle Scholar
  112. 112.
    Jessen BA, Shiue MH, Kaur H, Miller P, Leedle R, Guo H, Evans M (2013) Safety assessment of subconjunctivally implanted devices containing latanoprost in Dutch-belted rabbits. J Ocul Pharmacol Ther 29(6):574–585. doi: 10.1089/jop.2012.0190 PubMedCrossRefGoogle Scholar
  113. 113.
    Foo RC, Lamoureux EL, Wong RC, Ho SW, Chiang PP, Rees G, Aung T, Wong TT (2012) Acceptance, attitudes, and beliefs of Singaporean Chinese toward an ocular implant for glaucoma drug delivery. Invest Ophthalmol Vis Sci 53(13):8240–8245. doi: 10.1167/iovs.12-10393 PubMedCrossRefGoogle Scholar
  114. 114.
    Mealy JE, Fedorchak MV, Little SR (2014) In vitro characterization of a controlled-release ocular insert for delivery of brimonidine tartrate. Acta Biomater 10(1):87–93. doi: 10.1016/j.actbio.2013.09.024 PubMedCrossRefGoogle Scholar
  115. 115.
    Macoul KL, Pavan-Langston D (1975) Pilocarpine ocusert system for sustained control of ocular hypertension. Arch Ophthalmol 93(8):587–590PubMedCrossRefGoogle Scholar
  116. 116.
    Strohmaier K, Snyder E, Adamsons I (1998) A multicenter study comparing dorzolamide and pilocarpine as adjunctive therapy to timolol: patient preference and impact on daily life. J Am Optom Assoc 69(7):441–451PubMedGoogle Scholar
  117. 117.
    Kashiwagi K, Ito K, Haniuda H, Ohtsubo S, Takeoka S (2013) Development of latanoprost-loaded biodegradable nanosheet as a new drug delivery system for glaucoma. Invest Ophthalmol Vis Sci 54(8):5629–5637. doi: 10.1167/iovs.12-9513 PubMedCrossRefGoogle Scholar
  118. 118.
    Gagandeep, Garg T, Malik B, Rath G, Goyal AK (2014) Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci 53:10–16. doi: 10.1016/j.ejps.2013.11.016 PubMedCrossRefGoogle Scholar
  119. 119.
    Saati S, Lo R, Li PY, Meng E, Varma R, Humayun MS (2010) Mini drug pump for ophthalmic use. Curr Eye Res 35(3):192–201. doi: 10.3109/02713680903521936 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Butler MR, Prospero Ponce CM, Weinstock YE, Orengo-Nania S, Chevez-Barrios P, Frankfort BJ (2013) Topical silver nanoparticles result in improved bleb function by increasing filtration and reducing fibrosis in a rabbit model of filtration surgery. Invest Ophthalmol Vis Sci 54(7):4982–4990. doi: 10.1167/iovs.13-12047 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chen X, Zhu X, Li L, Xian G, Wang W, Ma D, Xie L (2013) Investigation on novel chitosan nanoparticle-aptamer complexes targeting TGF-beta receptor II. Int J Pharm 456(2):499–507. doi: 10.1016/j.ijpharm.2013.08.028 PubMedCrossRefGoogle Scholar
  122. 122.
    Shao T, Li X, Ge J (2011) Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol 6:64. doi: 10.1186/1746-1596-6-64 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sabzevari A, Adibkia K, Hashemi H, De Geest BG, Mohsenzadeh N, Atyabi F, Ghahremani MH, Khoshayand MR, Dinarvand R (2013) Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide. Invest Ophthalmol Vis Sci 54(8):5520–5526. doi: 10.1167/iovs.13-12296 PubMedCrossRefGoogle Scholar
  124. 124.
    Swaminathan S, Vavia PR, Trotta F, Cavalli R (2013) Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 9(6):998–1007PubMedCrossRefGoogle Scholar
  125. 125.
    Guignier B, Bourahla K, Bekaert V, Brasse D, Gaucher D, Speeg-Schatz C, Bourcier T (2013) Scintigraphic study of the lymphatic drainage of the anterior chamber of the mouse eye and its pathophysiological implications. J Fr Ophtalmol 36(10):836–842. doi: 10.1016/j.jfo.2012.11.021 PubMedCrossRefGoogle Scholar
  126. 126.
    Mansouri K, Weinreb RN (2012) Meeting an unmet need in glaucoma: continuous 24-h monitoring of intraocular pressure. Expert Rev Med Devices 9(3):225–231. doi: 10.1586/erd.12.14 PubMedCrossRefGoogle Scholar
  127. 127.
    Agnifili L, Mastropasqua R, Frezzotti P, Fasanella V, Motolese I, Pedrotti E, Iorio AD, Mattei PA, Motolese E, Mastropasqua L (2014) Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. doi: 10.1111/aos.12408 PubMedGoogle Scholar
  128. 128.
    Chitnis G, Maleki T, Samuels B, Cantor LB, Ziaie B (2013) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60(1):250–256. doi: 10.1109/TBME.2012.2205248 PubMedCrossRefGoogle Scholar
  129. 129.
    Ha D, de Vries WN, John SW, Irazoqui PP, Chappell WJ (2012) Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed Microdevices 14(1):207–215. doi: 10.1007/s10544-011-9598-3 PubMedCrossRefGoogle Scholar
  130. 130.
    Chen GZ, Chan IS, Leung LK, Lam DC (2014) Soft wearable contact lens sensor for continuous intraocular pressure monitoring. Med Eng Phys 36(9):1134–1139. doi: 10.1016/j.medengphy.2014.06.005 PubMedCrossRefGoogle Scholar
  131. 131.
    Sanchez I, Laukhin V, Moya A, Martin R, Ussa F, Laukhina E, Guimera A, Villa R, Rovira C, Aguilo J, Veciana J, Pastor JC (2011) Prototype of a nanostructured sensing contact lens for noninvasive intraocular pressure monitoring. Invest Ophthalmol Vis Sci 52(11):8310–8315. doi: 10.1167/iovs.10-7064 PubMedCrossRefGoogle Scholar
  132. 132.
    Araci IE, Su B, Quake SR, Mandel Y (2014) An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med. doi: 10.1038/nm.3621 PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Ophthalmology and Chemical EngineeringUniversity of Pittsburgh and the Louis J. Fox Center for Vision RestorationPittsburghUSA

Personalised recommendations