Advertisement

Polymeric Nanoparticulate Systems: A Potential Approach for Ocular Drug Delivery

  • Rutika Godse
  • Kavita Singh
  • Agnivesh Shrivastava
  • Ujwala ShindeEmail author
Chapter

Abstract

Ocular disorders are a major health concern worldwide that has a powerful impact on afflicted individuals and their families and are associated with enormous socioeconomical consequences. The prevalence of ocular disease conditions is remarkably increasing, and the pharmaceutical industry has taken a note of this significant unmet need and is putting enormous efforts in the development of safe and effective drug candidates for the treatment of ocular diseases. In addition to developing safe and effective drug candidates, their delivery to the target tissues is also of critical importance. Drugs can be delivered to the eye following local or systemic administration. The major goal in ocular drug delivery is to obtain therapeutic drug concentrations at the intended site of action for a reasonable period of time by overcoming biological barriers. Among the delivery systems designed so far for these purposes, those of a nanoscale size are particularly attractive from the easier administration and patient acceptability point of view. Multifaceted features of polymers can be efficiently exploited by engineering them into polymeric nanoparticles for ocular purpose to overcome the drawbacks of existing ocular therapy. This chapter aims to describe the actual potential of polymer-based nanoparticles for anterior and posterior segment ocular diseases. The chapter explores the suitable polymers and fabrication technology for ocular nanoparticles. It further summarizes the ability of polymeric nanoparticles by citing studies done in the field of treatment of anterior and posterior ocular conditions.

Keywords

Ocular delivery Nanoparticles Polymers Anterior segment Posterior segment 

References

  1. 1.
    Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13:135–143PubMedCrossRefGoogle Scholar
  2. 2.
    Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609PubMedCrossRefGoogle Scholar
  3. 3.
    Nakhlband A, Barar J (2011) Impacts of nanomedicines in ocular pharmacotherapy. Bioimpacts 1:7PubMedPubMedCentralGoogle Scholar
  4. 4.
    Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–277PubMedCrossRefGoogle Scholar
  5. 5.
    Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 16:61–73CrossRefGoogle Scholar
  6. 6.
    Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M (1996) Delivery of drugs to the eye by topical application. Prog Retin Eye Res 15:583–620CrossRefGoogle Scholar
  7. 7.
    Nagarwal RC, Kant S, Singh P, Maiti P, Pandit J (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13PubMedCrossRefGoogle Scholar
  8. 8.
    Wood RW, Lee HK, Kreuter J, Robinson JR (1985) Ocular disposition of polyhexyl-2-cyano(3-14C) acrylate nanoparticles in the albino rabbit. Int J Pharm 23:175–183.Google Scholar
  9. 9.
    Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed: Nanotechnol Biol Med 5:394–401Google Scholar
  10. 10.
    Jwala J, Vadlapatla RK, Vadlapudi AD, Boddu SHS, Pal D, Mitra AK (2012) Differential expression of folate receptor-alpha, sodium-dependent multivitamin transporter, and amino acid transporter (B (0,+)) in human retinoblastoma (Y-79) and retinal pigment epithelial (ARPE-19) cell lines. J Ocul Pharmacol Ther 28:237–244PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151PubMedCrossRefGoogle Scholar
  12. 12.
    Souto E, Mehnert W, Müller R (2006) Polymorphic behaviour of Compritol® 888 ATO as bulk lipid and as SLN and NLC. J Microencapsul 23:417–433PubMedCrossRefGoogle Scholar
  13. 13.
    Souto E, Müller R (2006) Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul 23:377–388PubMedCrossRefGoogle Scholar
  14. 14.
    Chan J, EL Maghraby GM, Craig JP, Alany RG (2007) Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm 328:65–71PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta RB, Kompella UB (2006) Nanoparticle technology for drug delivery. Taylor & Francis, New YorkCrossRefGoogle Scholar
  16. 16.
    De Campos AM, Sánchez A, Alonso MAJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168PubMedCrossRefGoogle Scholar
  17. 17.
    Rowe RC, Sheskey PJ, Owen SC, American Pharmacists Association (2006) Handbook of pharmaceutical excipients. Pharmaceutical Press, LondonGoogle Scholar
  18. 18.
    Contreras-Ruiz L, De La Fuente M, García-Vázquez C, Sáez V, Seijo B, Alonso MJ, Calonge M, Diebold Y (2010) Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea 29:550–558PubMedCrossRefGoogle Scholar
  19. 19.
    De La Fuente M, Seijo B, Alonso M (2008) Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15:668–676PubMedCrossRefGoogle Scholar
  20. 20.
    De La Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronan‐based nanocarriers for transmucosal delivery of macromolecules. Macromol Biosci 8:441–450PubMedCrossRefGoogle Scholar
  21. 21.
    De La Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024PubMedCrossRefGoogle Scholar
  22. 22.
    De Salamanca AE, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, Alonso MJ (2006) Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci 47:1416–1425CrossRefGoogle Scholar
  23. 23.
    Diebold Y, Jarrín M, Saez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564PubMedCrossRefGoogle Scholar
  24. 24.
    Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525PubMedGoogle Scholar
  25. 25.
    Nagarwal RC, Nath Singh P, Kant S, Maiti P, Pandit JK (2011) Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull 59:272–278PubMedCrossRefGoogle Scholar
  26. 26.
    Qu X, Khutoryanskiy VV, Stewart A, Rahman S, Papahadjopoulos-Sternberg B, Dufes C, Mccarthy D, Wilson CG, Lyons R, Carter KC (2006) Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7:3452–3459PubMedCrossRefGoogle Scholar
  27. 27.
    Rajendran N, Natrajan R, Kumar R, Selvaraj S (2010) Acyclovir-loaded chitosan nanoparticles for ocular delivery. Asian J Pharm 4:220CrossRefGoogle Scholar
  28. 28.
    Shao T, Li X, Ge J (2011) Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol 6:64PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Singh K, Shinde U (2011) Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Die Pharmazie 66:594–599PubMedGoogle Scholar
  30. 30.
    Sonvico F, Cagnani A, Rossi A, Motta S, DI Bari M, Cavatorta F, Alonso M, Deriu A, Colombo P (2006) Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharm 324:67–73PubMedCrossRefGoogle Scholar
  31. 31.
    Yuan X-B, Li H, Yuan Y-B (2006) Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr Polym 65:337–345CrossRefGoogle Scholar
  32. 32.
    Kogan G, Šoltés L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29:17–25PubMedCrossRefGoogle Scholar
  33. 33.
    Contreras-Ruiz L, De La Fuente M, Párraga JE, López-García A, Fernández I, Seijo B, Sánchez A, Calonge M, Diebold Y (2011) Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells. Mol Vis 17:279PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ibrahim HK, El-Leithy IS, Makky AA (2010) Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 7:576–585PubMedCrossRefGoogle Scholar
  35. 35.
    Wadhwa S, Paliwal R, Paliwal SR, Vyas S (2010) Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18:292–302PubMedCrossRefGoogle Scholar
  36. 36.
    Motwani SK, Ahmad F, Iqbal Z, Talegaonkar S, Khar R (2007) Gatifloxacin nanoparticles for ophthalmic delivery. Nanotechnology 2:310–312Google Scholar
  37. 37.
    Nagarwal RC, Kumar R, Pandit J (2012) Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47:678–685PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu X, Su M, Tang S, Wang L, Liang X, Meng F, Hong Y, Xu Z (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol Vis 18:1973PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kaul G, Amiji M (2005) Cellular interactions and in vitro DNA transfection studies with poly (ethylene glycol)‐modified gelatin nanoparticles. J Pharm Sci 94:184–198PubMedCrossRefGoogle Scholar
  40. 40.
    Konat Zorzi G, Contreras-Ruiz L, Párraga JE, López-García A, Romero Bello R, Diebold Y, Seijo BA, Sánchez A (2011) Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles. Mol Pharm 8:1783–1788PubMedCrossRefGoogle Scholar
  41. 41.
    Sakai T, Kuno N, Takamatsu F, Kimura E, Kohno H, Okano K, Kitahara K (2007) Prolonged protective effect of basic fibroblast growth factor–impregnated nanoparticles in royal college of surgeons rats. Invest Ophthalmol Vis Sci 48:3381–3387PubMedCrossRefGoogle Scholar
  42. 42.
    Tseng C-L, Chen K-H, Su W-Y, Lee Y-H, Wu C-C, Lin F-H (2013) Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. J Nanomater 2013:7Google Scholar
  43. 43.
    Zorzi GK, Párraga JE, Seijo B, Sánchez A (2011) Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy. Macromol Biosci 11:905–913PubMedCrossRefGoogle Scholar
  44. 44.
    Das S, Banerjee R, Bellare J (2005) Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs 18:203–212Google Scholar
  45. 45.
    Merodio M, Arnedo A, Renedo MJ, Irache JM (2001) Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259PubMedCrossRefGoogle Scholar
  46. 46.
    Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594PubMedCrossRefGoogle Scholar
  47. 47.
    Zimmer AK, Maincent P, Thouvenot P, Kreuter J (1994) Hydrocortisone delivery to healthy and inflamed eyes using a micellar polysorbate 80 solution or albumin nanoparticles. Int J Pharm 110:211–222CrossRefGoogle Scholar
  48. 48.
    Zimmer AK, Zerbe H, Kreuter J (1994) Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. In vitro and in vivo characterisation. J Control Release 32:57–70CrossRefGoogle Scholar
  49. 49.
    Dilbaghi N, Kaur H, Ahuja M, Kumar S (2013) Evaluation of tropicamide-loaded tamarind seed xyloglucan nanoaggregates for ophthalmic delivery. Carbohydr Polym 94:286–291PubMedCrossRefGoogle Scholar
  50. 50.
    Parmar C, Maughal MK (1982) Cordia oblique. In: Wild fruits. Kalyani publishers, New Delhi, pp 19–22Google Scholar
  51. 51.
    Nishinari K, Takemasa M, Zhang H, Takahashi R (2007) Storage plant polysaccharides: xyloglucans, galactomannans, glucomannans. Comprehensive glycoscience: from chemistry to systems biology, 1st edn. Elsevier, OxfordGoogle Scholar
  52. 52.
    Yadav M, Ahuja M (2010) Preparation and evaluation of nanoparticles of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohydr Polym 81:871–877CrossRefGoogle Scholar
  53. 53.
    Parmar C, Kaushal MK (1982) Cordia obliqua wild fruits. Kalyani Publishers, New DelhiGoogle Scholar
  54. 54.
    Ahuja A, Khar RK, Ali J (1997) Mucoadhesive drug delivery systems. Drug Dev Ind Pharm 23:489–515CrossRefGoogle Scholar
  55. 55.
    Bhagav P, Upadhyay H, Chandran S (2011) Brimonidine tartrate–eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech 12:1087–1101PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bucolo C, Maltese A, Puglisi G, Pignatello R (2002) Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100® nanoparticle suspension. Ophthalmic Res 34:319–323PubMedCrossRefGoogle Scholar
  57. 57.
    Desai SD, Blanchard J (2000) Pluronic® F127-based ocular delivery system containing biodegradable polyisobutylcyanoacrylate nanocapsules of pilocarpine. Drug Deliv 7:201–207PubMedCrossRefGoogle Scholar
  58. 58.
    Fresta M, Fontana G, Bucolo C, Cavallaro G, Giammona G, Puglisi G (2001) Ocular tolerability and in vivo bioavailability of poly (ethylene glycol)(PEG)‐coated polyethyl‐2‐cyanoacrylate nanosphere‐encapsulated acyclovir. J Pharm Sci 90:288–297PubMedCrossRefGoogle Scholar
  59. 59.
    Hsiue G-H, Hsu S-H, Yang C-C, Lee S-H, Yang I (2002) Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly- N-isopropylacrylamide. Biomaterials 23:457–462PubMedCrossRefGoogle Scholar
  60. 60.
    Inoue T, Chen G, Nakamae K, Hoffmana AS (1998) An AB block copolymer of oligo (methyl methacrylate) and poly (acrylic acid) for micellar delivery of hydrophobic drugs. J Control Release 51:221–229PubMedCrossRefGoogle Scholar
  61. 61.
    Langer K, Mutschler E, Lambrecht G, Mayer D, Troschau G, Stieneker F, Kreuter J (1997) Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery: part III: evaluation as drug delivery system for ophthalmic applications. Int J Pharm 158:219–231CrossRefGoogle Scholar
  62. 62.
    Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G (2002) Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16:53–61PubMedCrossRefGoogle Scholar
  63. 63.
    Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G (2002) Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23:3247–3255PubMedCrossRefGoogle Scholar
  64. 64.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163CrossRefGoogle Scholar
  66. 66.
    Agnihotri SM, Vavia PR (2009) Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed: Nanotechnol Biol Med 5:90–95Google Scholar
  67. 67.
    Chen Y-S, Alany RG, Young SA, Green CR, Rupenthal ID (2011) In vitro release characteristics and cellular uptake of poly (D, L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Deliv 18:493–501PubMedCrossRefGoogle Scholar
  68. 68.
    Dillen K, Vandervoort J, Van Den Mooter G, Ludwig A (2006) Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm 314:72–82PubMedCrossRefGoogle Scholar
  69. 69.
    Giannavola C, Bucolo C, Maltese A, Paolino D, Vandelli MA, Puglisi G, Lee VH, Fresta M (2003) Influence of preparation conditions on acyclovir-loaded poly-d, l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res 20:584–590PubMedCrossRefGoogle Scholar
  70. 70.
    Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 19:409–417PubMedCrossRefGoogle Scholar
  71. 71.
    Jin J, Zhou KK, Park K, Hu Y, Xu X, Zheng Z, Tyagi P, Kompella UB, Ma J-X (2011) Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Invest Ophthalmol Vis Sci 52:6230–6237PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nagarwal RC, Singh P, Kant S, Maiti P, Pandit J (2010) Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye. J Biomed Nanotechnol 6:648–657PubMedCrossRefGoogle Scholar
  73. 73.
    Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H (2011) Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 52:1516–1521PubMedCrossRefGoogle Scholar
  74. 74.
    Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K (2006) Treatment of experimental autoimmune uveoretinitis with poly (lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82:657–663PubMedCrossRefGoogle Scholar
  75. 75.
    Vega E, Egea MA, Calpena AC, Espina M, García ML (2012) Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA–PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine 7:1357PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vega E, Gamisans F, Garcia M, Chauvet A, Lacoulonche F, Egea M (2008) PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci 97:5306–5317PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang L, Li Y, Zhang C, Wang Y, Song C (2009) Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 4:175PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jain JP, Yenet Ayen W, Domb AJ, Kumar N (2011) Biodegradable polymers in drug delivery. In: Domb AJ, Kumar N, Ezra A (eds) Clinical use and clinical development. John Wiley & Sons, Inc., Hoboken, pp 1–58Google Scholar
  79. 79.
    Coulembier O, Degée P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly (β-malic acid) derivatives. Prog Polym Sci 31:723–747CrossRefGoogle Scholar
  80. 80.
    Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A (2002) Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83:365–375PubMedCrossRefGoogle Scholar
  81. 81.
    Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436PubMedCrossRefGoogle Scholar
  82. 82.
    Calvo P, Remunan‐Lopez C, Vila‐Jato J, Alonso M (1997) Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132CrossRefGoogle Scholar
  83. 83.
    De Campos AM, Sánchez A, Gref R, Calvo P, Alonso MAJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81PubMedCrossRefGoogle Scholar
  84. 84.
    Guha R, Chowdhury S, Palui H, Mishra A, Basak S, Mandal TK, Hazra S, Konar A (2013) Doxorubicin-loaded MePEG-PCL nanoparticles for prevention of posterior capsular opacification. Nanomedicine 8:1415–1428PubMedCrossRefGoogle Scholar
  85. 85.
    Tamboli V, Mishra GP, Mitra AK (2013) Novel pentablock copolymer (PLA–PCL–PEG–PCL–PLA)-based nanoparticles for controlled drug delivery: effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym Sci 291:1235–1245PubMedCrossRefGoogle Scholar
  86. 86.
    Yenice İ, Mocan MC, Palaska E, Bochot A, Bilensoy E, Vural İ, Irkeç M, Atilla Hincal A (2008) Hyaluronic acid coated poly-ɛ-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res 87:162–167PubMedCrossRefGoogle Scholar
  87. 87.
    Hans M, Lowman A (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327CrossRefGoogle Scholar
  88. 88.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedCrossRefGoogle Scholar
  89. 89.
    Zahoor A, Sharma S, Khuller G (2005) Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 26:298–303PubMedCrossRefGoogle Scholar
  90. 90.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100:5–28PubMedCrossRefGoogle Scholar
  91. 91.
    Andonova VY, Georgiev GS, Georgieva VT, Petrova NL, Kasarova M (2013) Indomethacin nanoparticles for applications in liquid ocular formulations. Folia Med (Plovdiv) 55:76–82Google Scholar
  92. 92.
    Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G (2001) Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm 218:113–124PubMedCrossRefGoogle Scholar
  93. 93.
    Mohanraj V, Chen Y (2007) Nanoparticles-a review. Trop J Pharm Res 5:561–573CrossRefGoogle Scholar
  94. 94.
    Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218:75–80PubMedCrossRefGoogle Scholar
  95. 95.
    Puglisi G, Fresta M, Giammona G, Ventura C (1995) Influence of the preparation conditions on poly (ethylcyanoacrylate) nanocapsule formation. Int J Pharm 125:283–287CrossRefGoogle Scholar
  96. 96.
    Krause H-J, Schwarz A, Rohdewald P (1986) Interfacial polymerization, a useful method for the preparation of polymethylcyanoacrylate nanoparticles. Drug Dev Ind Pharm 12:527–552CrossRefGoogle Scholar
  97. 97.
    Harmia-Pulkkinen T, Tuomi A, Kristoffersson E (1989) Manufacture of polyalkylcyanoacrylate nanoparticles with pilocarpine and timolol by micelle polymerization: factors influencing particle formation. J Microencapsul 6:87–93PubMedCrossRefGoogle Scholar
  98. 98.
    Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–132CrossRefGoogle Scholar
  99. 99.
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed: Nanotechnol Biol Med 2:8–21Google Scholar
  100. 100.
    Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134PubMedCrossRefGoogle Scholar
  101. 101.
    Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40PubMedCrossRefGoogle Scholar
  102. 102.
    Dillen K, Vandervoort J, Van Den Mooter G, Verheyden L, Ludwig A (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275:171–187PubMedCrossRefGoogle Scholar
  103. 103.
    Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 25:89–98CrossRefGoogle Scholar
  104. 104.
    Liu M, Dong J, Yang Y, Yang X, Xu H (2005) Characterization and release of triptolide-loaded poly (D, L-lactic acid) nanoparticles. Eur Polym J 41:375–382CrossRefGoogle Scholar
  105. 105.
    Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 47:99–112PubMedCrossRefGoogle Scholar
  106. 106.
    Konan-Kouakou Y, Boch R, Gurny R, Allemann E (2005) In vitro and in vivo activities of verteporfin-loaded nanoparticles. J Control Release 103:83–91PubMedCrossRefGoogle Scholar
  107. 107.
    Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21:1428–1439PubMedCrossRefGoogle Scholar
  108. 108.
    Miller CA (1988) Spontaneous emulsification produced by diffusion—a review. Colloids Surf 29:89–102CrossRefGoogle Scholar
  109. 109.
    Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed: Nanotechnol Biol Med 6:324–333Google Scholar
  110. 110.
    Kumar S, Linehan B, Tseng Y-C (2014) A new combination approach of CI jet and QESD to formulate pH-susceptible amorphous solid dispersions. Int J Pharm 466:368–374PubMedCrossRefGoogle Scholar
  111. 111.
    Tom JW, Debenedetti PG (1991) Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Biotechnol Prog 7:403–411PubMedCrossRefGoogle Scholar
  112. 112.
    Jain K, Suresh Kumar R, Sood S, Dhyanandhan G (2013) Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv 10:493–499PubMedCrossRefGoogle Scholar
  113. 113.
    Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058PubMedCrossRefGoogle Scholar
  114. 114.
    Masson V, Maurin F, Fessi H, Devissaguet J (1997) Influence of sterilization processes on poly (ε-caprolactone) nanospheres. Biomaterials 18:327–335PubMedCrossRefGoogle Scholar
  115. 115.
    Sintzel MB, Merkli A, Tabatabay C, Gurny R (1997) Influence of irradiation sterilization on polymers used as drug carriers-a review. Drug Dev Ind Pharm 23:857–878CrossRefGoogle Scholar
  116. 116.
    Bos GW, Trullas-Jimeno A, Jiskoot W, Crommelin DJ, Hennink WE (2000) Sterilization of poly (dimethylamino) ethyl methacrylate-based gene transfer complexes. Int J Pharm 211:79–88PubMedCrossRefGoogle Scholar
  117. 117.
    Magenheim B, Benita S (1991) Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharma Sci 1:221–241Google Scholar
  118. 118.
    Müller R, Wallis KH (1993) Surface modification of iv injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm 89:25–31CrossRefGoogle Scholar
  119. 119.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651PubMedCrossRefGoogle Scholar
  120. 120.
    Shrivastava A, Shimpi H, Roy S, Galdhar C, Shirole R, Gaikwad R, Rajan M, Iyer K, Menon M (2012) Nanoparticle based DPI formulation for active targeting of etoposide in lung cancer. In: Dalby R, Byron P, Peart J, Farr S, Suman J (eds) Respiratory drug delivery; Phoenix, USA. DHI Publishing, River Grove, pp 427–432Google Scholar
  121. 121.
    Kim YC, Chiang B, Wu X, Prausnitz MR (2014) Ocular delivery of macromolecules. J Control Release 190:172–181PubMedCrossRefGoogle Scholar
  122. 122.
    Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor Z (1979) A clinical trial with Piloplex–a new long-acting pilocarpine compound: preliminary report. Ann Ophthalmol 11:555–561PubMedGoogle Scholar
  123. 123.
    Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym 73:44–54CrossRefGoogle Scholar
  124. 124.
    Shinde U, Ahmed MH, Singh K (2013) Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Delivery 2013:15Google Scholar
  125. 125.
    Hermans K, Van Den Plas D, Everaert A, Weyenberg W, Ludwig A (2012) Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 82:27–35PubMedCrossRefGoogle Scholar
  126. 126.
    Singh K, Shinde U (2010) Development and evaluation of novel polymeric nanoparticles of brimonidine tartrate. Curr Drug Deliv 7:244–251PubMedCrossRefGoogle Scholar
  127. 127.
    Leucuta SE (1989) The kinetics of in vitro release and the pharmacokinetics of miotic response in rabbits of gelatin and albumin microspheres with pilocarpine. Int J Pharm 54:71–78CrossRefGoogle Scholar
  128. 128.
    Friess W (1998) Collagen–biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136PubMedCrossRefGoogle Scholar
  129. 129.
    Sintzel MB, Bernatchez SF, Tabatabay C, Gurny R (1996) Biomaterials in ophthalmic drug delivery. Eur J Pharm Biopharm 42:358–374Google Scholar
  130. 130.
    Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 57:251–261PubMedCrossRefGoogle Scholar
  131. 131.
    Bucolo C, Maltese A, Maugeri F, Busà B, Puglisi G, Pignatello R (2004) Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J Pharm Pharmacol 56:841–846PubMedCrossRefGoogle Scholar
  132. 132.
    Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G (2006) Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 7:E192–E198PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Adibkia K, Shadbad MRS, Nokhodchi A, Javadzedeh A, Barzegar-Jalali M, Barar J, Mohammadi G, Omidi Y (2007) Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target 15:407–416PubMedCrossRefGoogle Scholar
  134. 134.
    Adibkia K, Omidi Y, Siahi MR, Javadzadeh AR, Barzegar-Jalali M, Barar J, Maleki N, Mohammadi G, Nokhodchi A (2007) Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 23:421–432PubMedCrossRefGoogle Scholar
  135. 135.
    Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18PubMedCrossRefGoogle Scholar
  136. 136.
    Vega E, Egea M, Valls O, Espina M, Garcia M (2006) Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 95:2393–2405PubMedCrossRefGoogle Scholar
  137. 137.
    Losa C, Marchal-Heussler L, Orallo F, Jato JLV, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87PubMedCrossRefGoogle Scholar
  138. 138.
    Losa C, Calvo P, Castro E, Vila‐Jato J, Alonso M (1991) Improvement of ocular penetration of amikacin sulphate by association to poly (butylcyanoacrylate) nanoparticles. J Pharm Pharmacol 43:548–552PubMedCrossRefGoogle Scholar
  139. 139.
    Marchal-Heussler L, Maincent P, Hoffman M, Spittler J, Couvreur P (1990) Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations. Int J Pharm 58:115–122CrossRefGoogle Scholar
  140. 140.
    Davis S (2000) Drug delivery systems. Interdiscip Sci Rev 25:175–183CrossRefGoogle Scholar
  141. 141.
    Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331:153–159PubMedCrossRefGoogle Scholar
  142. 142.
    Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P (1993) Poly (ε-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 10:386–390PubMedCrossRefGoogle Scholar
  143. 143.
    Amrite AC, Kompella UB (2006) Nanoparticles for ocular drug delivery. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery. Taylor & Francis Group, LLC, New York, pp 319–360Google Scholar
  144. 144.
    Fitzgerald P, Hadgraft J, Kreuter J, Wilson C (1987) A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles. Int J Pharm 40:81–84CrossRefGoogle Scholar
  145. 145.
    Calvo P, Vila‐Jato JL, Alonso MJ (1996) Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci 85:530–536PubMedCrossRefGoogle Scholar
  146. 146.
    Zimmer A, Kreuter J, Robinson J (1991) Studies on the transport pathway of PBCA nanoparticles in ocular tissues. J Microencapsul 8:497–504PubMedCrossRefGoogle Scholar
  147. 147.
    Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim K-J, Lee V (2003) Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis 9:559–568PubMedGoogle Scholar
  148. 148.
    Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VH (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21:641–648PubMedCrossRefGoogle Scholar
  149. 149.
    Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281PubMedCrossRefGoogle Scholar
  150. 150.
    Hsu J (2007) Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol 18:235–239PubMedCrossRefGoogle Scholar
  151. 151.
    De Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye‐Goldenberg B, Naud MC, Garcia E, Couvreur P (2004) Intraocular injection of tamoxifen‐loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712PubMedCrossRefGoogle Scholar
  152. 152.
    El-Samaligy MS, Rojanasakul Y, Charlton JF, Weinstein GW, Lim JK (1996) Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit’s eye. Drug Deliv 3:93–97CrossRefGoogle Scholar
  153. 153.
    Bejjani RA, Benezra D, Cohen H, Rieger J, Andrieu C, Jeanny J-C, Gollomb G, Behar-Cohen FF (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132PubMedGoogle Scholar
  154. 154.
    Dos Santos ALG, Bochot A, Tsapis N, Artzner F, Bejjani RA, Thillaye-Goldenberg B, De Kozak Y, Fattal E, Behar-Cohen F (2006) Oligonucleotide-polyethylenimine complexes targeting retinal cells: structural analysis and application to anti-TGFβ-2 therapy. Pharm Res 23:770–781CrossRefGoogle Scholar
  155. 155.
    Suen W-LL, Chau Y (2013) Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release 167:21–28PubMedCrossRefGoogle Scholar
  156. 156.
    Pan CK, Durairaj C, Kompella UB, Agwu O, Oliver SC, Quiroz-Mercado H, Mandava N, Olson JL (2011) Comparison of long-acting bevacizumab formulations in the treatment of choroidal neovascularization in a rat model. J Ocul Pharmacol Ther 27:219–224PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma J-X (2009) Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 58:1902–1913PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746PubMedPubMedCentralGoogle Scholar
  159. 159.
    Boddu SH, Jwala J, Chowdhury MR, Mitra AK (2010) In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug. J Ocul Pharmacol Ther 26:459–468Google Scholar
  160. 160.
    Amrite AC, Kompella UB (2005) Size‐dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57:1555–1563PubMedCrossRefGoogle Scholar
  161. 161.
    Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano-and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44:1192–1201PubMedCrossRefGoogle Scholar
  162. 162.
    Giarmoukakis A, Labiris G, Sideroudi H, Tsimali Z, Koutsospyrou N, Avgoustakis K, Kozobolis V (2013) Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: in vitro and in vivo evaluation. Preliminary results. Exp Eye Res 112:29–36PubMedCrossRefGoogle Scholar
  163. 163.
    Shome D, Poddar N, Sharma V, Sheorey U, Maru GB, Ingle A, Sarin R, Banavali S, Dikshit R, Jain V (2009) Does a nanomolecule of carboplatin injected periocularly help in attaining higher intravitreal concentrations? Invest Ophthalmol Vis Sci 50:5896–5900PubMedCrossRefGoogle Scholar
  164. 164.
    Banerjee R, Carvalho E (2013) Nanoparticulate in-situ gels of TPGS, gellan and PVA as vitreous humor substitutes. US patent 8343471Google Scholar
  165. 165.
    Gupta N, Goel S, Gupta H (2013) Patent review on nanotechnology in ocular drug delivery. Recent Pat Nanomed 3:37–46CrossRefGoogle Scholar
  166. 166.
    Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2013) Nanoparticles laden in situ gel for sustained ocular drug delivery. J Pharm Bioallied Sci 5:162PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ravi N (2012) Hydrogel nanocomposites for ophthalmic applications. US patent 8153156Google Scholar
  168. 168.
    DasPaul S, Mazumder R, Bhattacharya S, Kumar Jha A (2012) A review on patented nanotechnology used for ocular drug delivery. Recent Pat Nanomed 2:156–163CrossRefGoogle Scholar
  169. 169.
    Raiche A, Salamone J (2004) Method for the production of nanoparticles and microparticles by ternary agent concentration and temperature alteration induced immiscibility. US patent 20060057215Google Scholar
  170. 170.
    Kararli TT, Bandyopadhyay R, Singh SK, Hawley LC (2002) Ophthalmic formulation of a selective cyclooxygenase-2 inhibitory drug. US patent 20,020,035,264Google Scholar
  171. 171.
    Xu R, Roberts C, Zhang L (2010) Multi-functional biodegradable particles for selectable targeting, imaging, and therapeutic delivery and use thereof for treating ocular disorders. US patent 20110104069Google Scholar
  172. 172.
    Chauhan A, Gulsen D (2004) Ophthalmic drug delivery system. US patent 8273366Google Scholar
  173. 173.
    Clinical Trials Registry and Results Database (2014a) https://clinicaltrials.gov/ct2/show/NCT00738361?term=eye+nanoparticle&rank=1 [Online]. Accessed 08 Aug 2014
  174. 174.
    Clinical Trials Registry and Results Database (2014b) https://clinicaltrials.gov/ct2/show/NCT01523314?term=eye+nanoparticle&rank=2 [Online]. Accessed 08 Aug 2014

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rutika Godse
    • 1
  • Kavita Singh
    • 1
  • Agnivesh Shrivastava
    • 1
  • Ujwala Shinde
    • 1
    Email author
  1. 1.Bombay College of PharmacyMumbaiIndia

Personalised recommendations