Cyclodextrins in Ocular Drug Delivery

  • Sridhar AnandEmail author
  • Vanildo Martins Lima Braga


Cyclodextrins are a group of water-insoluble, donut-shaped, naturally occurring cyclic oligosaccharides that are produced as a result of the bacterial breakdown of α-d-glucose polymers, such as cellulose. They are inactive molecules that do not display any innate biological activity. The ocular delivery of certain drugs is affected not only by the drug’s physicochemical properties but also by the anatomical barriers of the eye. Drug-cyclodextrin complexes, formed by the physical occlusion of the torus cavity by the drug molecule, redress this issue. Thus, the ocular delivery of glaucoma drugs (e.g., carbonic anhydrase inhibitors, prostaglandin derivatives, pilocarpine), nonsteroidal anti-inflammatory drugs (e.g., indomethacin), and antifungal drugs (e.g., voriconazole) is enhanced by such inclusion complexes. Additionally, specific drug delivery systems (e.g., hydrogels, mucoadhesives, ocular gels) are harnessed to deliver the drug payload from the drug-cyclodextrin complex in a tunable fashion. This chapter seeks to elaborate on the chemical, biological, and pharmaceutical aspects governing cyclodextrins in the context of ocular drug delivery.


Cyclodextrin Inclusion complexes Hydrogels Mucoadhesives Glaucoma 


  1. 1.
    Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1–2):1–14CrossRefGoogle Scholar
  2. 2.
    Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035–2044CrossRefPubMedGoogle Scholar
  3. 3.
    Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456CrossRefPubMedGoogle Scholar
  4. 4.
    Le Bourlais C, Acar L et al (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17(1):33–58CrossRefPubMedGoogle Scholar
  5. 5.
    Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63(9):1119–1135CrossRefPubMedGoogle Scholar
  6. 6.
    Uekama K, Adachi H et al (1992) Improved transdermal delivery of prostaglandin e1 through hairless mouse skin: combined use of carboxymethyl-ethyl-β-cyclodextrin and penetration enhancers. J Pharm Pharmacol 44(2):119–121CrossRefPubMedGoogle Scholar
  7. 7.
    Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36:30–42CrossRefPubMedGoogle Scholar
  8. 8.
    Arima H, Motoyama K, Irie T (eds) (2011) Recent findings on safety profiles of cyclodextrins, cyclodextrin conjugates, and polypseudorotaxanes. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Wiley, HobokenGoogle Scholar
  9. 9.
    Alvarez-Lorenzo C, Yañez F et al (2010) Ocular drug delivery from molecularly-imprinted contact lenses. J drug deliv sci technol 20(4):237–248CrossRefGoogle Scholar
  10. 10.
    Tieppo A, White C et al (2012) Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157(3):391–397CrossRefPubMedGoogle Scholar
  11. 11.
    Alvarez-Lorenzo C, Hiratani H et al (2006) Contact lenses for drug delivery. Am J Drug Deliv 4(3):131–151CrossRefGoogle Scholar
  12. 12.
    Rosa dos Santos J-F, Alvarez-Lorenzo C et al (2009) Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials 30(7):1348–1355CrossRefGoogle Scholar
  13. 13.
    dos Santos J-FR, Couceiro R et al (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4(3):745–755CrossRefPubMedGoogle Scholar
  14. 14.
    Glisoni RJ, García-Fernández MJ et al (2013) Β-cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93(2):449–457CrossRefPubMedGoogle Scholar
  15. 15.
    Moglioni AG, Alvarez-Lorenzo C et al (2013) Romina j. Glisoni, maría j. García-fernández c, marylú pino d, gabriel gutkind b, d. Carbohydr Polym 93:449–457CrossRefPubMedGoogle Scholar
  16. 16.
    Glisoni RJ, Chiappetta DA et al (2012) Novel 1-indanone thiosemicarbazone antiviral candidates: aqueous solubilization and physical stabilization by means of cyclodextrins. Pharm Res 29(3):739–755CrossRefPubMedGoogle Scholar
  17. 17.
    Glisoni RJ, Cuestas ML et al (2012) Antiviral activity against the hepatitis c virus (hcv) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci 47(3):596–603CrossRefPubMedGoogle Scholar
  18. 18.
    Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15(13):4336–4350CrossRefPubMedGoogle Scholar
  19. 19.
    Sigurdsson HH, Stefánsson E et al (2005) Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J Control Release 102(1):255–262CrossRefPubMedGoogle Scholar
  20. 20.
    Gudmundsdottir BS, Petursdottir D et al (2014) Γ-cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther 30(1):35–41CrossRefPubMedGoogle Scholar
  21. 21.
    Jóhannesson G, Moya-Ortega MD et al (2014) Dorzolamide cyclodextrin nanoparticle suspension eye drops and trusopt in rabbit. J Ocul Pharmacol Ther 30(6):464–467CrossRefPubMedGoogle Scholar
  22. 22.
    Loftsson T, Jansook P et al (2012) Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol 90(7):603–608CrossRefPubMedGoogle Scholar
  23. 23.
    Loftsson T, Friðriksdóttir H et al (1994) 2-hydroxypropyl-β-cyclodextrin in topical carbonic anhydrase inhibitor formulations. Eur J Pharm Sci 1(4):175–180CrossRefGoogle Scholar
  24. 24.
    Mora MJ, Tártara LI et al (2013) Characterization, dissolution and in vivo evaluation of solid acetazolamide complexes. Carbohydr Polym 98(1):380–390CrossRefPubMedGoogle Scholar
  25. 25.
    García-Fernández MJ, Tabary N et al (2013) Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym 98(2):1343–1352CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Y, Ren K et al (2013) Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 98(1):638–643CrossRefPubMedGoogle Scholar
  27. 27.
    Halim Mohamed MA, Mahmoud AA (2011) Formulation of indomethacin eye drops via complexation with cyclodextrins. Curr Eye Res 36(3):208–216CrossRefPubMedGoogle Scholar
  28. 28.
    Bucolo C, Melilli B et al (2011) Ocular pharmacokinetics profile of different indomethacin topical formulations. J Ocul Pharmacol Ther 27(6):571–576CrossRefPubMedGoogle Scholar
  29. 29.
    Freedman KA, Klein JW et al (1993) Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr Eye Res 12(7):641–647CrossRefPubMedGoogle Scholar
  30. 30.
    Loftsson T (1995) The effect of polymers on cyclodextrin complexation. Abstracts of papers, The American Chemical Society, ACS, PO BOX 57136, Washington, DC 20037-0136Google Scholar
  31. 31.
    Suhonen P, Järvinen T et al (1995) Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop. Pharm Res 12(4):529–533CrossRefPubMedGoogle Scholar
  32. 32.
    Loftsson T, Stefánsson E (1997) Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 23(5):473–481CrossRefGoogle Scholar
  33. 33.
    Loftssona T, Järvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36(1):59–79CrossRefPubMedGoogle Scholar
  34. 34.
    Ishikawa H, Yoshitomi T et al (2002) Pharmacological effects of latanoprost, prostaglandin e2, and f2 α on isolated rabbit ciliary artery. Graefes Arch Clin Exp Ophthalmol 240(2):120–125CrossRefPubMedGoogle Scholar
  35. 35.
    Gonzalez JR, Baiza-Duran L et al (2007) Comparison of the stability, efficacy, and adverse effect profile of the innovator 0.005 % latanoprost ophthalmic solution and a novel cyclodextrin-containing formulation. J Clin Pharmacol 47(1):121–126CrossRefPubMedGoogle Scholar
  36. 36.
    Hariprasad SM, Mieler WF et al (2008) Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol 92(7):871–878CrossRefPubMedGoogle Scholar
  37. 37.
    Prajna NV, Mascarenhas J et al (2010) Comparison of natamycin and voriconazole for the treatment of fungal keratitis. Arch Ophthalmol 128(6):672–678CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dupuis A, Tournier N et al (2009) Preparation and stability of voriconazole eye drop solution. Antimicrob Agents Chemother 53(2):798–799CrossRefPubMedGoogle Scholar
  39. 39.
    Pawar P, Kashyap H et al (2013) Hpβcd-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. BioMed Res Int 2013(73):1–9Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesWegmans School of Pharmacy, St. John Fisher CollegeRochesterUSA
  2. 2.Rua Sebastião Gonçalves CoelhoDivinópolisBrazil

Personalised recommendations