Nanovesicular Carrier Systems for Ophthalmic Drug Delivery

  • Lipika ChablaniEmail author
  • Vijay Kumar


Ophthalmic drug delivery systems include a range of pharmaceutical dosage forms capable of either topical or systemic drug delivery. Nanovesicular drug delivery systems have been explored extensively for various such ophthalmic applications. Drug delivery using the nanovesicular systems requires a thorough understanding of the anatomy of the eye to determine the barriers and pathways. A good vesicular system is able to utilize these pathways and cross the barriers efficiently to deliver drugs to either topical or systemic tissues. Nanovesicular systems offer several advantages including good permeability, prolonged residence/contact time, sustained release profiles, easy administration, and are often patient compliant. Liposomes, niosomes, pharmacosomes, and spanlastics are some of the frequently studied nanovesicular drug delivery systems for ophthalmic applications. Multiple commercial ophthalmic liposomal products are available; however, many more are still being evaluated and are pending clinical trials. Formulation and development of these vesicular delivery systems has evolved in the past few decades to resolve issues related to vesicular aggregation, collapse of the vesicular system, and toxicity concerns. Approaches such as surface modification to avoid aggregation and use of cyclodextrin polymers for enhanced drug loading and stability are some of the examples. Overall, nanovesicles for ophthalmic drug delivery are a promising approach to deliver both hydrophilic and hydrophobic drug candidates efficiently.


Ophthalmic drug delivery Nanovesicles Liposomes Niosomes and spanlastics 


  1. 1.
    Patel PB, Shastri D, Shelat PK, Shukla AK (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1:8CrossRefGoogle Scholar
  2. 2.
    Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y (2009) Ocular drug delivery; Impact of in vitro cell culture models. J Ophthalmic Vis Res 4:238–252PubMedPubMedCentralGoogle Scholar
  3. 3.
    Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011:863734CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems – recent advances. Prog Retin Eye Res 17:33–58CrossRefPubMedGoogle Scholar
  5. 5.
    Felt O, Furrer P, Mayer JM, Plazonnet B, BURI P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180:185–193CrossRefPubMedGoogle Scholar
  6. 6.
    Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H (2013) Retinal drug delivery using eyedrop preparations of poly-L-lysine-modified liposomes. Eur J Pharm Biopharm 83:364–369CrossRefPubMedGoogle Scholar
  7. 7.
    Schaeffer HE, Krohn DL (1982) Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 22:220–227PubMedGoogle Scholar
  8. 8.
    Smolin G, Okumoto M, Feiler S, Condon D (1981) Idoxuridine-liposome therapy for herpes simplex keratitis. Am J Ophthalmol 91:220–225CrossRefPubMedGoogle Scholar
  9. 9.
    Velpandian T, Narayanan K, Nag TC, Ravi AK, Gupta SK (2006) Retinal toxicity of intravitreally injected plain and liposome formulation of fluconazole in rabbit eye. Indian J Ophthalmol 54:237–240CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF (2010) Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 51:3575–3582CrossRefPubMedGoogle Scholar
  11. 11.
    Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16:44–56CrossRefPubMedGoogle Scholar
  12. 12.
    Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS (2012) Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 7:123–131PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mokhtar Ibrahim M, Tawfique SA, Mahdy MM (2014) Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm 40:765–773CrossRefPubMedGoogle Scholar
  14. 14.
    Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’shea P, Moss SE, Somavarapu S, Cordeiro MF (2014) Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 10:1575–1584CrossRefPubMedGoogle Scholar
  15. 15.
    Yu S, Wang QM, Wang X, Liu D, Zhang W, Ye T, Yang X, Pan W (2015) Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm 480:128–136CrossRefPubMedGoogle Scholar
  16. 16.
    Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RF (2014) Topical delivery of ocular therapeutics: carrier systems and physical methods. J Pharm Pharmacol 66:507–530CrossRefPubMedGoogle Scholar
  17. 17.
    Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K (2014) Nonionic surfactant vesicles in ocular delivery: innovative approaches and perspectives. Biomed Res Int 2014:263604CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Abdelkader H, Ismail S, Kamal A, Alany RG (2011) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100:1833–1846CrossRefPubMedGoogle Scholar
  19. 19.
    Vyas SP, Mysore N, Jaitely V, Venkatesan N (1998) Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 53:466–469PubMedGoogle Scholar
  20. 20.
    Abdelkader H, Wu Z, Al-Kassas R, Alany RG (2012) Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm 433:142–148CrossRefPubMedGoogle Scholar
  21. 21.
    Prabhu P, Nitish KR, Koland M, Harish N, Vijayanarayan K, Dhondge G, Charyulu R (2010) Preparation and evaluation of nano-vesicles of brimonidine tartrate as an ocular drug delivery system. J Young Pharm 2:356–361CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Akhtar N (2013) Vesicular ocular drug delivery system: preclinical and clinical perspective of drugs delivered via niosomes. Int J Biopharm 4:11Google Scholar
  23. 23.
    Maiti S, Paul S, Mondol R, Ray S, Sa B (2011) Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. AAPS PharmSciTech 12:755–763CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gupta N, Shrivastava V, Saxena S, Pandey A (2010) Formulation and evaluation of non-ionic surfactant vesicles (niosomes) for ocular delivery of ofloxacin. Int J Pharm Life Sci 1:413–418Google Scholar
  25. 25.
    Karthikeyan D, Pandey VP (2009) Study on ocular absorption of diclofenac sodium niosome in rabbits eye. Pharmacologyonline 1:769–779Google Scholar
  26. 26.
    Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14CrossRefPubMedGoogle Scholar
  27. 27.
    Patidar S, Jain S (2012) Non-ionic surfactant based vesicles (Niosomes) containing Flupirtine Maleate as an ocular drug delivery system. J Chem Pharm Res 4:4495–4500Google Scholar
  28. 28.
    Abdelbary G, El-Gendy N (2008) Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 9:740–747CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yasin MN, Hussain S, Malik F, Hameed A, Sultan T, Qureshi F, Riaz H, Perveen G, Wajid A (2012) Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5%w/v) in experimental conjunctivitis in albino rabbits. Pak J Pharm Sci 25:117–121PubMedGoogle Scholar
  30. 30.
    Aggarwal D, Pal D, Mitra AK, Kaur IP (2007) Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 338:21–26CrossRefPubMedGoogle Scholar
  31. 31.
    Raghuwanshi N, Dikshit S, Sharma A, Upamanyu N, Dubey A, Pathak A (2010) Formulation and evaluation of niosome- encapsulated levofloxacin for ophthalmic controlled delivery. Int J Adv Pharm Res 3:901–906Google Scholar
  32. 32.
    Saettone MF, Perini G, Carafa M, Santucci E, Alhaique F (1996) Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate. A preliminary evaluation. S T P Pharm Sci 6:94–98Google Scholar
  33. 33.
    Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472CrossRefPubMedGoogle Scholar
  34. 34.
    Pandita A, Sharma P (2013) Pharmacosomes: an emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm 2013:348186PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ioele G, de Luca M, Ragno G (2014) Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med Chem 6:35–43CrossRefPubMedGoogle Scholar
  36. 36.
    Kaur IP, Chhabra S, Aggarwal D (2004) Role of cyclodextrins in ophthalmics. Curr Drug Deliv 1:351–360CrossRefPubMedGoogle Scholar
  37. 37.
    Mccormack B, Gregoriadis G (1994) Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J Drug Target 2:449–454CrossRefPubMedGoogle Scholar
  38. 38.
    Fujisawa T, Miyai H, Hironaka K, Tsukamoto T, Tahara K, Tozuka Y, Ito M, Takeuchi H (2012) Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes. Int J Pharm 436:564–567CrossRefPubMedGoogle Scholar
  39. 39.
    Morand K, Bartoletti AC, Bochot A, Barratt G, Brandely ML, Chast F (2007) Liposomal amphotericin B eye drops to treat fungal keratitis: physico-chemical and formulation stability. Int J Pharm 344:150–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, Wegmans School of PharmacySt. John Fisher CollegeRochesterUSA
  2. 2.Unither PharmaRochesterUSA

Personalised recommendations