Skip to main content

Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean)

  • Chapter
  • First Online:
Book cover Rhodolith/Maërl Beds: A Global Perspective

Abstract

Distribution of living rhodoliths in the Macaronesian realm is limited by extensive rocky shores and narrow insular shelves that rapidly drop off beyond the 50-m isobath. Wind and wave erosion is most intense on north and northeast-facing shores due to the prevailing northeasterly trade winds over much of the region. Southern shores offer more sheltered, leeward settings. Rhodolith beds tend to thrive on eastern shores with strong long-shore currents and southeastern shores that benefit from wave refraction. Rhodoliths are not entirely absent off northern shores, but may fail to reach maximum size before being washed ashore to make berms and beaches. Islands considered in greater detail in this survey include Santiago, Maio, and Sal from the Cape Verde Islands, Fuerteventura and the related islet of Lobos in the Canary Islands, Selvagem Grande and Pequena from the Savage Islands, Porto Santo in the Madeira Islands, and Santa Maria in the Azores. This contribution expands on the concept that living rhodoliths enter the fossil record through a range of taphofacies defined by the degree of breakage and corrosion and further characterized by sedimentological criteria regarding the amount of matrix and packing among bioclasts. Rhodolith deposits in Macaronesia seldom reflect settings under natural growth conditions. Rather, rhodoliths are subject to transportation and post-mortem disintegration resulting in the accumulation of rhodolith materials captured by subtidal storm deposits, tidal pools and platform over-wash deposits, as well as beachrock, beach, berm, hurricane, tsunami, and coastal dune deposits. Some of this material is transferred farther offshore, but exposed island strata show a tendency for shoreward migration of taphofacies. Rhodolith beds provide a habitat for some species of marine invertebrates, including epifaunal and infaunal elements directly associated with whole rhodoliths and these features play a role in rhodolith biostratinomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu MM, Ribeiro L, Arsénio P, Bulcão L (2002) Dinâmica Geomorfológica como Metodologia Básica na Avaliação da Sensibilidade da Paisagem. Aplicação ao Ilhéu de Vila Franca do Campo, S. Miguel, Açores, 49–58. In: Associação Portuguesa de Geomorfólogos (ed) Contribuições para a Dinâmica Geomorfológica, vol 1. Publicações da Associação Portuguesa de Geomorfólogos, Lisboa, pp 1–140

    Google Scholar 

  • Ávila SP, Amen R, Azevedo JMN, Cachão M, García-Talavera F (2002) Checklist of the Pleistocene marine molluscs of Praínha and Lagoínhas (Santa Maria island, Azores). Açoreana 9(4):343–370

    Google Scholar 

  • Baarli BG, Santos A, Silva CM, Ledesma-Vázquez J, Mayoral E, Cachão M, Johnson ME (2011) Diverse macroids and rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. J Coast Res 28:296–305

    Google Scholar 

  • Baarli BG, Santos A, Mayoral EJ, Ledesma-Vázquez J, Johnson ME, da Silva CM, Cachão M (2013) What Darwin did not see: pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geol Mag 150:183–189

    Article  Google Scholar 

  • Baarli BG, Cachão M, da Silva CM, Johnson ME, Mayoral EJ, Santos A (2014) A middle miocene carbonate embankment on an active volcanic slope: Ilhéu de Baixo, Madeira Archipelago, Eastern Atlantic. Geol J 49:90–106

    Article  Google Scholar 

  • Bassi D, Humblet M, Iryu Y (2011) Recent ichnocoenosis in deep water macroids, Ryukyu Islands, Japan. Palaios 26:232–238

    Article  Google Scholar 

  • Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2012) Recent macroids on the Kikai-jima shelf, Central Ryukyu Islands, Japan. Sedimentology. doi:10.1111/j.1365-3091.2012.01333.x

    Google Scholar 

  • Brand S (ed) (2011) African severe weather port guide from naval research laboratory in Monterey, California. http://www.nrlmry.navy.mil/port_studies/africaports/Mindelo/index.html. Last modified Apr 2011

  • Brandt DS (1989) Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios 4:303–309

    Article  Google Scholar 

  • Brett CE, Baird GC (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207–227

    Article  Google Scholar 

  • Brooke B (2001) The distribution of carbonate eolianite. Earth-Sci Rev 55:135–164

    Article  Google Scholar 

  • Chamberlain YM, Irvine LM, Walker RI (1988) A redescription of Lithophyllum crouanii (Rhodophyta, Corallinales) in the British Isles with an assessment of its relationship to L. orbiculatus. Br Phycol J 23:177–192

    Article  Google Scholar 

  • Checconi A, Monaco P (2008) Trace fossil assemblages in rhodoliths from the Middle Miocene of Mt. Camposauro (Longano Formation, Southern Apennines, Italy). Stud Trent Sci Nat Acta Geol 83:165–176

    Google Scholar 

  • Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sed Geol 225:50–66

    Article  Google Scholar 

  • Darwin C (1839) Journal and remarks, 1832–1836. In: FitzRoy R (ed) Narrative of the surveying voyages of his majesty’s ships adventure and beagle between the years 1826 and 1836, Volume 3. Henry Colburn, London, pp 1–615

    Google Scholar 

  • Darwin C (1844) Geological observations on the volcanic islands visited during the voyage of the H.M.S. Beagle. Smith, Elder & Co, London, pp 1–175

    Google Scholar 

  • Dias GT, Villaça RC (2012) Coralline algae depositional environments on the Brazilian central southeastern shelf. J Coast Res 28:270–279

    Article  Google Scholar 

  • Dott RH Jr, Bourgeois J (1982) Hummocky stratification: significance of its variable bedding sequences. Bull Geol Soc Am 93:663–680

    Article  Google Scholar 

  • Dumas S, Arnott RWC (2006) Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073–1076

    Article  Google Scholar 

  • Ferreira MP (1985) Evolução geocronológica e paleomagnética das ilhas do arquipélago da Madeira: uma síntese. Mem Not Mus Lab Miner Geol Univ Coimbra 99:213–218

    Google Scholar 

  • Ferreira MP, Macedo CR, Ferreira JF (1988) K/Ar geochronology in the Selvagens, Porto Santo and Madeira islands (Eastern-Central Atlantic): a 30-m.y. spectrum of submarine and subaerial volcanism. Lunar Planets Inst 19:325–326

    Google Scholar 

  • Foslie MH (1898) Some new or critical lithothamnia. Konglige norske Videnskapelige Selskap Skrifter 6:1–19

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rock and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Bogaard P, Zankl G, Garbe-Schonberg D (2001) Earlier history of the ≥ 70 Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagem Archipelago and neighboring seamounts in the eastern North Atlantic. J Volcanol Geotherm Res 111:55–88

    Article  Google Scholar 

  • Gutiérrez M, Casillas R, Fernández C, Balogh K, Ahijado A, Castillo C, Colmenero JR, García-Navarro E (2006) The submarine volcanic succession of the basal complex of Fuerteventura, Canary Islands: a model of submarine growth and emergence of tectonic volcanic islands. Bull Geol Soc Am 118:785–804

    Article  Google Scholar 

  • Herbert S (2005) Charles Darwin, geologist. Cornell University Press, Ithaca, pp 1–485

    Google Scholar 

  • Holbourn A, Kuhnt W, Regenberg M, Schulz M, Mix A, Andersen N (2010) Does Antarctic glaciation force migration of the tropical rain belt? Geology 38:783–786

    Article  Google Scholar 

  • Hontoria F, Redón S, Maccari M, Varó I, Navarro JC, Ballell L, Amat F (2012) A revision of Artemia biodiversity in Macaronesia. Aquat Biosyst 8:25–31

    Article  Google Scholar 

  • Hutchings PA, Kiene WE, Cunningham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organism (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11:23–31

    Article  Google Scholar 

  • Instituto Hidrográfico (2008) Caracterização dos depósitos sedimentares da Plataforma insular sul da Ilha do Porto Santo. Final technical report Project GM 52OP02, Hydrographic Institute Portuguese Navy. p 78

    Google Scholar 

  • John CM, Mutti M, Adatte T (2003) Mixed carbonate-siliciclastic record on the North African margin (Malta) – coupling of weathering processes and mid Miocene climate. Bull Geol Soc Am 115:217–229

    Article  Google Scholar 

  • Johnson RG (1960) Models and methods for the analysis of the mode of formation of fossil assemblages. Geol Soc Am Bull 71:1075–1086

    Article  Google Scholar 

  • Johnson ME, da Silva CM, Santos A, Baarli BG, Cachão M, Mayoral E, Rebelo AC, Ledesma-Vázquez J (2011) Rhodolith transport and immobilization on a volcanically active rocky shore: middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 300:113–127

    Article  Google Scholar 

  • Johnson ME, Baarli BG, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral E, Ramalho R, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeog Palaeoclim Palaeoecol 329–330:83–100

    Article  Google Scholar 

  • Johnson ME, Baarli BG, da Silva CM, Cachão M, Ramalho R, Ledesma-Vázquez J, Mayoral E, Santos A (2013) Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago. Aeolian Res 8:1–9

    Article  Google Scholar 

  • Johnson ME, Ramalho RS, Baarli BG, Cachão M, da Silva CM, Mayoral EJ, Santos A (2014) Miocene-Pliocene rocky shores on São Nicolau (Cape Verde Islands): contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeogr Palaeoclimatol Palaeoecol 395:131–143

    Article  Google Scholar 

  • Ledesma-Vázquez J, Johnson ME, Backus DH, Mirabal-Dávila C (2007) Coastal evolution from transgressive barrier deposit to marine terrace on Isla Coronados, Baja Califonria Sur, Mexico. Cien Mar 33:335–351

    Google Scholar 

  • Mata J, Fonseca PE, Prada S, Rodrigues D, Martins D, Ramalho R, Madeira J, Cachão M, Silva CM, Matias MJ (2013) O Arquipélago da Madeira. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol. II. Geologia Meso-cenozóica, Escolar Editora, pp 691–746

    Google Scholar 

  • Morri C, Bianchi CN (1996) Ecological niches of hermatypic corals at Ilha do Sal (Arquipélago de Cabo Verde). Bol Mus Munic Funchal 4:473–485

    Google Scholar 

  • Nebelsick JH, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. In: Insalaco E, Skelton P, Palmer T (eds) Carbonate platform systems: components and interactions. Geol Soc London Spec Pubs 178:89–107

    Google Scholar 

  • Paris R, Giachetti T, Chevalier J, Guillou H, Frank N (2011) Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo volcano. Sediment Geol 239:129–145

    Article  Google Scholar 

  • Penrose DL (1996) Genus Neogoniolithon. In: The marine benthic flora of southern Ausgtralia. Rhodophyta. Part IIIB, Cracilariales, Rhododymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study, Canberra: 280–283

    Google Scholar 

  • Puga-Bernabéu A, Martín JM, Braga JC (2007) Tsunami-related deposits in temperate carbonate ramps, Sorbas Basin, southern Spain. Sediment Geol 199:107–127

    Article  Google Scholar 

  • Quartau R, Trenhaile AS, Mitchell NC, Tempera F (2010) Development of volcanic insular shelves: insights from observations and modelling of Faial Island in the Azores Archipelago. Mar Geol 275:66–83

    Article  Google Scholar 

  • Ramalho R, Quartau R, Trenhaile AS, Mitchell NC, Woodroffe CD, Ávila SP (2013) Coastal evolution on oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Sci Rev 127:140–170

    Article  Google Scholar 

  • Ravelo AC, Andreasen DH, Lyle M, Olivarez-Lyle A, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267

    Article  Google Scholar 

  • Rebelo AC, Rasser MW, Riosmena-Rodríguez R, Neto AI, Ávila SP (2014) Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation. Phytotaxa 190:370–382

    Article  Google Scholar 

  • Rosas-Alquicira EF, Riosmena-Rodríguez R, Couto RP, Neto AI (2009) New additions to the Azorean algal flora, with ecological observations on rhodolith formations. Cah Biol 50:143–151

    Google Scholar 

  • Rusu L, Soares CG (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196

    Article  Google Scholar 

  • Santos A, Mayoral E, Johnson ME, Baarli BG, Silva CM, Cachão M, Ledesma-Vázquez J (2012) Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene shoreline (Porto Santo, Madeira Archipelago, Portugal). Facies 58:573–585

    Article  Google Scholar 

  • Serralheiro A (1970) Geologia da Ilha de Maio. Junta de Investigações do Ultramar, Lisbon, pp 1–103

    Google Scholar 

  • Setchell WA, Mason LR (1943) Goniolithon and Neogoniolithon two genera of crustaceous coralline algae. Proc Natl Acad Sci 29(3–4):87–92

    Article  Google Scholar 

  • Soares AF (1973) A formação eolianítica da ilha de Porto Santo. Memórias e Notícias, Publ. Museu Lab Min. Geológico Univ. Coimbra Cent. Estud Geol 75:47–88

    Google Scholar 

  • Steiner C, Hobson A, Favre P, Stampfli GM, Hernandez J (1998) Mesozoic sequence of Fuerteventura (Canary Islands): witness of early jurassic sea-floor spreading in the central Atlantic. Bull Geol Soc Am 110:1304–1317

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster MS (2009) Libing rhodolith bed ecosystems in the Gulf of California. In: Johnson ME, Ledesma-Vázquez J (eds) Atlas of coastal ecosystems in the Western Gulf of California. University of Arizona Press, Tucson, pp 73–82

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrates communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Tores PC, Silva LC, Serralheiro A, Tassinari C, Munhá J (2002) Enquadramento geocronológico pelo metodo K/Ar das principais sequências volcano-estratigráficas da Ilha do Sal – Cabo Verde, vol 18. Garcia de Orta, Serie Geologia, Lisboa, pp 9–13

    Google Scholar 

  • Van Der Land J (1993) Marine biota of the Cape Verde Islands. Cour Forsch Inst Senckenb 159:39–44

    Google Scholar 

  • Williams H, Delinger E (2013) Contributions of Hurricane Ike storm surge sedimentation to long-term aggradation of southeastern Texas coastal marshes. J Coast Res 65:838–843, Sp Issue

    Article  Google Scholar 

  • Zazo C, Goy JL, Hillaire-Marcel C, Gillot PY, Soler V, González JH, Dabrio CJ, Ghaleb B (2002) Raised marine sequences of Lanzarote and Fuerteventura revisited – a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the quaternary. Quat Sci Rev 21:2019–2046

    Article  Google Scholar 

Download references

Acknowledgments

Funding for fieldwork in the Madeira, Canary, and Cape Verde island groups from 2011 to 2013 was provided under grant CGL2010-15372-BTE from the Spanish Ministry of Science and Innovation to project leader Eduardo Mayoral (University of Huelva). E. Mayoral and A. Santos acknowledge the support given by the research group RNM-276. Esther Martín González and Carolina Castillo (La Laguna University, Canary Islands) are thanked for their help and expert guidance on Fuerteventura during the 2011 field season of research. We are grateful to the rangers at the nature preserve in the Savage Islands for providing beach and dune samples from the landing place on the southwest side of Selvagem Pequena. Thanks also go to Mónica Albuquerque at EMEPC for her assistance in providing dredge data from the Selvagems. We are grateful to Julio Aguirre Rodriguez (University of Granada) for engaging us in stimulating discussions that helped to clarify outlooks on taphonomy and to an anonymous reviewer for comments that helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markes E. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, M.E. et al. (2017). Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean). In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_9

Download citation

Publish with us

Policies and ethics