Advertisement

Oligocene Rhodolith Beds in the Central Mediterranean Area

Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 15)

Abstract

During the Oligocene, extensive carbonate platforms developed in the central Mediterranean. These areas were colonized by different organisms, being the coralline algae one of the most important contributors to the carbonate production. Red algae produced sediments in shallow seagrass environments, however dominate the mesophotic and oligophotic zones where produced rhodolith beds. The diffusion of red algae during the Oligocene was favoured by reduction in atmospheric CO2, a rise in seawater alkalinity and increasing Mg/Ca ratios. This chapter deals with these deposits analyzing the depositional models and the controlling factors accounting for the origin of rhodolith beds.

Keywords

Benthic Foraminifera Coralline Alga Algal Assemblage Carbonate Ramp Large Benthic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Grazia Vannucci is gratefully acknowledged for discussion and collaboration through the years. The constructive criticisms and the comments by Juan C. Braga and Julio Aguirre are greatly appreciated. This work was supported by PRIN Project 2010–2011. Gabriel Walton is thanked for the revision of the English text.

References

  1. Accordi B, Devoto G, La Monica GB, Praturlon A, Sirna G, Zalaffi M (1967) Il Neogene nell’Appennino laziale-abruzzese. Commitee Mediterranean Neogene Stratigraphy Proc IV Session Bologna. Giorn Geol 35:235–268Google Scholar
  2. Adams CG, Lee DE, Rosen BR (1990) Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeogr Palaeoclimatol Palaeoecol 77:289–313CrossRefGoogle Scholar
  3. Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–74CrossRefGoogle Scholar
  4. Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  5. Airoldi M (1932) Contributo allo studio delle Corallinacee del terziario italiano. I. Le Corallinacee dell’Oligocene ligure-piemontese. Palaeontogr Ital 33:55–83Google Scholar
  6. Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58CrossRefGoogle Scholar
  7. Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280CrossRefGoogle Scholar
  8. Benedetti A, Di Carlo M, Pignatti JS (2010) Embryo size variation in larger foraminiferal lineages: stratigraphy versus paleoecology in Nephrolepidina praemarginata (R. Douvillé, 1908) from the Majella Mt. (Central Apennines). J Med Earth Sci 2:19–29Google Scholar
  9. Bernoulli D (2001) Mesozoic–tertiary carbonate platforms, slopes and basin of the external Apennines and Sicily. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer Academic Publishers, Dordrecht, pp 307–326CrossRefGoogle Scholar
  10. Betzler C, Brachert TC, Nebelsick J (1997) The warm temperate carbonate province – a review of facies, zonations, and delimitations. Cour Forschungsinst Senckenb 201:83–99Google Scholar
  11. Bianchi F, Carbone S, Grasso M, Invernizzi G, Lentini F, Longaretti G, Merlini S, Mostardini F (1987) Sicilia orientale: profilo geologico Nebrodi-Iblei. Mem Soc Geol Ital 38:429–458Google Scholar
  12. Bishop WF, Debono G (1996) Hydrocarbon geology of southern offshore Malta and surrounding regions. J Pet Geol 19(2):129–160CrossRefGoogle Scholar
  13. Björk M, Mohammed SM, Bjöklund M, Semesi A (1995) Coralline algae, important coral-reef builders threatened by pollution. Ambio 24:502–505Google Scholar
  14. Bosellini A (1989) Dynamics of tethyan carbonate platforms. In: Crevello PD, Wilson JL, Sarc JF, Read JF (eds) Controls on carbonate platform and basin platform. S.E.P.M., spec. publ. 44:3–13, 13 Figs., Sepm (Society for Sedimentary Geology), TulsaGoogle Scholar
  15. Bosellini FR (2006) Biotic changes and their control on Oligocene-Miocene reefs: a case study from the Apulia platform margin (southern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 241:393–409CrossRefGoogle Scholar
  16. Bosellini FR, Trevisani E (1992) Coral facies and cyclicity in the Castelgomberto Limestone (early Oligocene, eastern Lessini Mountains, northern Italy). Riv Ital Paleontol Stratigr 98(3):339–352Google Scholar
  17. Bosellini A, Parente M (1994) The Apulia platform margin in the Salento peninsula (southern Italy). Giorn Geol 56:167–177Google Scholar
  18. Bosellini FR, Trevisani E (1992) Coral facies and cyclicity in the Castelgomberto Limestone (early Oligocene, eastern Lessini Mountains, northern Italy). Riv Ital Paleontol Stratigr 98(3):339–352Google Scholar
  19. Bosellini A, Bosellini FR, Colalongo ML, Parente M, Russo A, Vescogni A (1999) Stratigraphic architecture of the Salento coast from Capo d’Otranto to S. Maria di Leuca (Apulia, southern Italy). Riv Ital Paleontol Stratigr 105:397–416Google Scholar
  20. Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19(2):365–395Google Scholar
  21. Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  22. Bosence DWJ (1983b) Coralline algae from the Miocene of Malta. Palaeontology 26(1):147–173Google Scholar
  23. Bosence DWJ, Pedley HM (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43CrossRefGoogle Scholar
  24. Braga JC, Aguirre J (2001) Coralline algal assemblages in Upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41CrossRefGoogle Scholar
  25. Braga JC, Bassi D (2011) Facies and coralline algae from Oligocene limestones in the Malaguide Complex (SE Spain). Ann Naturhist Mus Wien Ser A 113:291–308Google Scholar
  26. Braga JC, Davies PJ (1993) Coralline algal distribution in one tree reef (Southern Great Barrier Reef, NE Australia). In: International Society for Reef Studies 1st European Regional Meet, Vienna, Abstr 9Google Scholar
  27. Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36(3):535–547Google Scholar
  28. Braga JC, Bassi D, Piller W (2010) Palaeoenviromental significance of Oligocene–Miocene coralline red algae – a review. In: Mutti M, Piller W, Betzler C (eds) Oligocene – Miocene carbonate systems. International Association of Sedimentologists, Spec Publ. Wiley-Blackwell, Chichester, 42:165–182Google Scholar
  29. Brandano M, Civitelli G (2007) Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: a modern example of mixed carbonate–siliciclastic sedimentation. Sed Geol 201:286–301CrossRefGoogle Scholar
  30. Brandano M, Corda L (2002) Nutrient, sea level and tectonics constrains for the facies architecture of Miocene carbonate ramp in Central Italy. Terra Nova 14:257–262CrossRefGoogle Scholar
  31. Brandano M, Corda L (2011) The lower Miocene spongolitic sequence of the central apennines:a record of the Burdigalian siliceous event in the central Mediterranean. Ann Naturhist Mus Wien Ser A 113:145–166Google Scholar
  32. Brandano M, Cornacchia I, Raffi I, Tomassetti L (2016) The Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy). Sediment Geol 333:1–14CrossRefGoogle Scholar
  33. Brandano M, Frezza V, Tomassetti L, Pedley M, Matteucci R (2009a) Facies analysis and palaeoenvironmental interpretation of the late Oligocene attard member (lower coralline limestone formation), Malta. Sedimentology 56:138–1158CrossRefGoogle Scholar
  34. Brandano M, Frezza V, Tomassetti L, Cuffaro M (2009b) Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeogr Palaeoclimatol Palaeoecol 274:54–63CrossRefGoogle Scholar
  35. Brandano M, Morsilli M, Vannucci G, Parente M, Bosellini F, Mateu-Vicens G (2010) Rhodolith-rich lithofacies of the Porto Badisco Calcarenites (upper Chattian, Salento, southern Italy). Ital J Geosci 129(1):119–131Google Scholar
  36. Brandano M, Lipparini L, Campagnoni V, Tomassetti L (2012) Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (Central Apennines, Italy). Sediment Geol 255–256:29–41CrossRefGoogle Scholar
  37. Buxton MWN, Pedley HM (1989) A standardized model for Tethyan Tertiary carbonate ramps. J Geol Soc Lond 146:746–748CrossRefGoogle Scholar
  38. Cahuzac B, Poignant A (1997) Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifères néritiques. Bull Soc Geol Fr 168:155–169Google Scholar
  39. Carannante G, Esteban M, Milliam JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sed Geol 60:333–346CrossRefGoogle Scholar
  40. Carbone S, Grasso M, Lentini F (1982) Considerazione sull’evoluzione geodinamica della Sicilia sud-orientale dal Cretaceo al Quaternario. Mem Soc Geol Ital 24:367–386Google Scholar
  41. Carboni MG, Civitelli G, Corda L, Esu D, Matteucci R, Pallini G, Schiavinotto F, Ventura G (1982) Sedimenti spongolitici del Miocene inferiore dell’Appennino centrale: un inquadramento preliminare. Geol Romana 21:529–543Google Scholar
  42. Carminati E, Corda L, Mariotti G, Brandano M (2007) Tectonic control on the architecture of a Miocene carbonate ramp in the Central Apennines (Italy): insights from facies and backstripping analyses. Sediment Geol 198:233–254CrossRefGoogle Scholar
  43. Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In: The geology of Italy: tectonics and life along plate margins. Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J Virt Expl Electronic Edition 36, paper 9.doi:  10.3809/jvirtex.2010.00226
  44. Casero P, Rour F, Moretti I, Endignoux L, Muller C, Sage L, Vially R (1988) Neogene geodynamic evolution of the Southern Appennines. Mem Soc Geol Ital 41:109–120Google Scholar
  45. Cipollari P, Cosentino D (1995) Miocene unconformities in the Central Apennines: geodynamic significance and sedimentary basin evolution. Tectonophysics 252:375–389CrossRefGoogle Scholar
  46. Civitelli G, Brandano M (2005) Atlante delle litofacies e modello deposizionale dei calcari a briozoi e Litotamni nella Piattaforma carbonatica laziale-abruzzese. Boll Soc Geol Ital 124:611–643Google Scholar
  47. Corti G, Doglioni C, Cuffaro M, Innocenti F, Manetti P (2006) Coexisting geodynamic processes in the Sicily Channel. In: Dilek Y, Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia, Geol Soc Am Sp Paper 409. Geological Society of America, Boulder, pp 83–96. doi: 10.1130/2006.2409(05) CrossRefGoogle Scholar
  48. Coxall HK, Pearson PN (2007) The Eocene-Oligocene transition. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies, The Micropalaeontological Society Spec. Publ. The Geological Society, London, pp 351–387Google Scholar
  49. Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57CrossRefGoogle Scholar
  50. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller KG (2009) Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24(4), PA4216. http://dx.doi.org/10.1029/2008pa001683
  51. Cuffaro M, Riguzzi F, Scrocca D, Antonioli F, Carminati E, Livani M, Doglioni C (2010) On the geodynamics of the northern Adriatic plate. Rend Fis Acc Lincei 21(Suppl 1):S253–S279. doi: 10.1007/s12210-010-0098-9 CrossRefGoogle Scholar
  52. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  53. Denizot M (1968) Les algues floridées encroûtantes (à l’exclusion des Corallinacées). Thèse, Laboratoire de cryptogamie, Muséum national d’Histoire naturelle, Paris, 310 pGoogle Scholar
  54. Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang XM (2007) Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445:635–638CrossRefGoogle Scholar
  55. Foslie M (1909) Algolgiske notiser. VI. K Nor Vidensk Selsk Skr 2:1–63Google Scholar
  56. Geel T (1973) The geology of the Betic of Málaga, the Subbetic, and the zone between these two units in the Vélez Rubio area (Southern Spain). GUA Pap Geol 5:1–131Google Scholar
  57. Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238CrossRefGoogle Scholar
  58. Grasso M, Torelli L, Mazzoldi G (1999) Cretaceous–Palaeogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian Islands (Central Mediterranean). Tectonophysics 315:235–250CrossRefGoogle Scholar
  59. Hallock P (1996) Reefs and reef limestones in Earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 13–42Google Scholar
  60. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398CrossRefGoogle Scholar
  61. Höntzsch S, Scheibner C, Brock JP, Kuss J (2013) Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts. Turk J Earth Sci 22:891–918CrossRefGoogle Scholar
  62. Ichiki S, Mizuta H, Yamamoto H (2000) Effects of irradiance, water temperature and nutrients on the growth of sporelings of the crustose coralline alga Lithophyllum yessoense Fosile (Corallinales, Rhodophyceae). Phycol Res 48:115–120CrossRefGoogle Scholar
  63. Jorry SJ, Hasler C, Davaud E (2006) Hydrodynamic behavior of Nummulites: implications for depositional models. Facies 52:221–235CrossRefGoogle Scholar
  64. Klett TR (2001) Total petroleum system of the Pelagian Province, Tunisia, Libya, and Malta-The Bou Dabbous-Tertiary and Jurassic-Cretaceous composite. U S Geol Surv Bull 2202-D:1–27Google Scholar
  65. Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann M, Harrison P, Hoegh-Guildberg O, Hutchings P, Jones GB, Larkum AWD, O’Neil J, Steven A, Tentori E, Ward S, Williamson J, Yellowlees D (2001) Encore: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull 42:91–120CrossRefGoogle Scholar
  66. Langer M, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46(suppl 1):57–86Google Scholar
  67. Ligi M, Bonatti E, Cuffaro M, Brunelli D (2013) Post-Mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction. Sci Rep 3:2752. doi: 10.1038/srep02752 CrossRefGoogle Scholar
  68. Martín-Martín M (1996) El Terciario del Dominio Maláguide en Sierra Espuña (Cordillera Bética Oriental, SE de España). Estratigrafía y Evolución Palogeográfica. Thesis, University of Granada, Granada, 297ppGoogle Scholar
  69. Maslov VP (1962) Fossil red algae of USSR and their connection with facies. Trudy Inst Geol Akad Nauk SSSR 53:1–221 (in Russian)Google Scholar
  70. Miller KG, Fairbanks RA, Mountain GS (1987) Tertiary oxygen isotope synthesis, sealevel history and continental margin erosion. Paleoceanography 2:1–19CrossRefGoogle Scholar
  71. Mostardini F, Merlini S (1986) Appennino centro-meridionale: sezioni Geologiche e proposta di modello strutturale. Mem Soc Geol Ital 35:177–202Google Scholar
  72. Mutti M, Bernoulli D, Stille P (1997) Temperate carbonate platform drowning linked to Miocene oceanographic events: Maiella platforms margin, Italy. Terra Nova 9:122–125CrossRefGoogle Scholar
  73. Mutti M, Bernoulli D, Spezzaferri S, Stille P (1999) Lower and Middle Miocene carbonate facies in the Central Mediterranean: the impact of paleoceanography on sequence stratigraphy. In: Harris PMM et al (eds) Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops and models, SEPM Spec Publ Soc Econ Paleont Miner 63. Sepm (Society for Sedimentary Geology), Tulsa, pp 371–384CrossRefGoogle Scholar
  74. Nardin M, Rossi D (1966) Condizioni strutturali della zona compresa nel Foglio Otranto (Provincia di Lecce). Mem Museo Civico St Nat 14:415–430, VeronaGoogle Scholar
  75. Nebelsick JH, Rasser M, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216CrossRefGoogle Scholar
  76. Nebelsick JH, Bassi D, Lempp J (2013) Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148. doi: 10.1007/s10347-012-0349-6 CrossRefGoogle Scholar
  77. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603CrossRefGoogle Scholar
  78. Parente M (1994) A revised stratigraphy of the upper Cretaceous to Oligocene units from southeastern Salento (Apulia, southern Italy). Boll Soc Paleontol Ital 33:155–170Google Scholar
  79. Pedley HM (1978) A new lithostratigraphical and palaeoenvinronmental interpretation for the coralline limestone formations (Miocene) of the Maltese Islands. Overseas Geol Miner Resour (IGS) 54:17 ppGoogle Scholar
  80. Pedley HM (1998) A review of sediment distributions and processes in Oligo-Miocene ramps of southern Italy and Malta (Mediterranean divide). In: Wrigth VP, Burchette TP (eds) Carbonate ramps. Geol Soc London Geol Soc Spec Publ. The Geological Society, London, 149:163–179Google Scholar
  81. Pekar SF, Christie-Blick N, Kominz MA, Miller KG (2002) Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology 30:903–906CrossRefGoogle Scholar
  82. Pekar SF, DeConto RM, Harwood DM (2006) Resolving a late Oligocene conundrum: deep-sea warming and Antarctic glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 231:29–40CrossRefGoogle Scholar
  83. Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Rec Trav Stn Mar Endoume Marseille Fasc Hors Ser Suppl 31(47):5–138Google Scholar
  84. Piller WE, Mansour AM (1990) The northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach II. Sediment analyses and sedimentary facies. Beitr PalaKont OG Sterr 16:1–102Google Scholar
  85. Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334CrossRefGoogle Scholar
  86. Pomar L, Hallock P (2008) Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive vs. environmental influence. Geology 35:899–902CrossRefGoogle Scholar
  87. Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651CrossRefGoogle Scholar
  88. Quaranta F, Piazza M, Vannucci G (2009) Climatic and tectonic control on the distribution of the Oligocene reefs of the Tertiary Piedmont Basin (NW Italy). Boll Soc Geol Ital 128(2):587–591Google Scholar
  89. Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34(1):151–166, dx.doi.org/ 10.5252/g2012n1a9 CrossRefGoogle Scholar
  90. Reuter M, Piller WE, Brandano M, Harzhauser M (2013) Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events. Glob Planet Chang 111:226–236. doi: 10.1016/j.gloplacha.2013.09.018 CrossRefGoogle Scholar
  91. Riegl B, Piller WE (1999) Coral frameworks revisited: reefs and coral carpets in the northern Red Sea. Coral Reefs 18:241–253CrossRefGoogle Scholar
  92. Silvestri G (2012) Paleoecological reconstruction of Cenozoic turbid-water coral assemblages through taphonomic and biofacies analysis. PhD thesis, Università degli studi di Modena e Reggio Emilia (Italy), 150 ppGoogle Scholar
  93. Silvestri G, Bosellini FR, Nebelsick JH (2011) Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages. Palaios 26:805–820CrossRefGoogle Scholar
  94. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  95. Stefani C, Fellin MG, Zattin M, Zuffa GG, Dalmonte C, Mancin N, Zanferrari A (2007) Provenance and palaeogeographic evolution in a multi-source foreland: the Cenozoic Venetian-Friulian Basin (NE Italy). J Sed Res 77:867–887CrossRefGoogle Scholar
  96. Thomas E, Zachos JC, Bralower TJ (2000) Deep-sea environments on a warm earth: latest Paleocene–early Eocene. In: Huber BT, MacLeod KG, Wing SL (eds) Warm climates in earth history. Cambridge University Press, New York, pp 132–160Google Scholar
  97. Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346CrossRefGoogle Scholar
  98. Van Andel TH (1975) Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26:187–194CrossRefGoogle Scholar
  99. Vandenberghe N, Hilgen FJ, Speijer RP, Ogg JG, Gradstein FM, Hammer O, Hollis CJ, Hooker JJ (2012) Chapter 28 – The paleogene period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, Boston, pp 855–921. http://dx.doi.org/10.1016/B978-0-444-59425-9.00028-7
  100. Vecsei A, Moussavian E (1997) Paleocene reefs on the Maiella platform margin, Italy: an example of the effects of the Cretaceous/Tertiary boundary events on reefs and carbonate platforms. Facies 36:123–140CrossRefGoogle Scholar
  101. Vecsei A, Sanders DGK (1999) Facies analysis and sequence stratigraphy of a Miocene warm–temperate carbonate ramp, Montagna della Maiella, Italy. Sediment Geol 123:103–127CrossRefGoogle Scholar
  102. Vecsei A, Sanders DGK, Bernoulli D, Eberli GP, Pignatti JS (1998) Cretaceous to Miocene sequence stratigraphy and evolution of the Maiella carbonate platform margin, Italy. Mesozoic Cenozoic Seq Stratigr Eur Basin: SEPM Spec Publ 60:53–74CrossRefGoogle Scholar
  103. Vezzani L, Festa A, Ghisetti F (2010) Geology and tectonic evolution of the central-southern Apennines, Italy. Geol Soc Am Spec Publ 469:1–58Google Scholar
  104. Wilson MEJ, Vecsei A (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth Sci Rev 69:133–168CrossRefGoogle Scholar
  105. Wright VP, Burgess PM (2005) The carbonate factory continuum, facies mosaics and microfacies: an appraisal of some of the key concepts underpinning carbonate sedimentology. Facies 51:17–23CrossRefGoogle Scholar
  106. Wright CA, Murray JW (1972) Comparisons of modern and Palaeogene foraminiferid distributions and their environmental implications. Mem Bur Rech Geol Min (BRGM) Fr 79:87–96Google Scholar
  107. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292:686–693CrossRefGoogle Scholar
  108. Zanazzi A, Kohn MJ, MacFadden BJ, Terry DO (2007) Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445:639–642CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraLa Sapienza Università di RomaRomeItaly

Personalised recommendations