Re-sedimented Rhodoliths in Channelized Depositional Systems

  • Davide Bassi
  • Lucia Simone
  • James H. Nebelsick
Part of the Coastal Research Library book series (COASTALRL, volume 15)


The knowledge of re-sedimented rhodolith deposits has always lagged behind that of in situ deposits, which can be formed in shallow and deeper water carbonate and mixed siliciclastic-carbonate depositional settings. A combination of detailed outcrop analyses from three published case studies reveals a series of palaeobiological and taphonomic signals that are used to identify fossil re-sedimented rhodoliths. The re-sedimented rhodolith deposits of the middle Eocene carbonates in the Venetian area (northeast Italy), the lower Miocene carbonates from southern Sardinia (Italy), and the lower–middle Miocene carbonates from Southern Apennines (southern Italy) are described in terms of rhodolith morphology, coralline algal assemblages, inner arrangement, outer growth-forms, and taphonomic signatures. In all the cases, shallow water rhodolith beds were redeposited to feed offshore deposits through submarine channel systems. The sedimentological features, rhodolith characteristics and taphonomic signatures of the rhodolith deposits are compared from the carbonate factory, through the shelf-margin to the proximal and distal parts of the tributary belt. Within submarine channelized carbonate settings, complex relationship patterns of autochthonous/parautochthonous and allochthonous rhodolith deposits were governed by the interplay of changes in environmental factors such as water energy, light irradiance, substrate characteristics, and residence time on the sediment-water interface.


Middle Miocene Middle Eocene Tributary Channel Shelf Margin Carbonate Factory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



DB has been funded by local research grants (FAR) at the University of Ferrara. Thoroughly constructive comments by J.C. Braga and J. Aguirre are greatly appreciated.


  1. Adey WH (1986) Coralline algae as indicators of sea-level. In: Van de Plassche O (ed) Sea level research: a manual for the collection and evaluation of data. Free Univ Geo Book, Norwich, pp 229–280CrossRefGoogle Scholar
  2. Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904CrossRefGoogle Scholar
  3. Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–74CrossRefGoogle Scholar
  4. Aguirre J, Braga JC, Martín JM (1993) Algal nodules in the upper Pliocene deposits at the coast of Cadiz (S Spain). In: Barattolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Boll Soc Paleontol Ital 1:1–7Google Scholar
  5. Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  6. Aguirre J, Braga JC, Martín JM, Betzler C (2012) Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34:115–136CrossRefGoogle Scholar
  7. Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012) Occurrence and distribution of rhodolith beds on the Fernando de Noronha Archipelago of Brazil. Aquat Bot 101:41–45CrossRefGoogle Scholar
  8. Ballantine DL, Bowden-Kerby A, Aponte NE (2000) Cruoriella rhodoliths from shallow-water back reef environments in La Parguera, Puerto Rico (Caribbean Sea). Coral Reefs 19:75–81CrossRefGoogle Scholar
  9. Bassi D (1995) Crustose coralline algal pavements from Late Eocene – Colli Berici of Northern Italy. Riv Ital Paleont Strat 101:81–92Google Scholar
  10. Bassi D (1998) Coralline algal facies and their palaeoenvironments in the Late Eocene of Northern Italy (Calcare di Nago). Facies 39:179–202CrossRefGoogle Scholar
  11. Bassi D (2005) Larger foraminiferal and coralline algal facies in an Upper Eocene storm influenced, shallow water carbonate platform (Colli Berici, north-eastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 226:17–35CrossRefGoogle Scholar
  12. Bassi D, Nebelsick JH (2005) Coralline red algae in the Middle-Upper Eocene shallow water carbonates of the Colli Berici, north-eastern Italy. In: Field excursion Guide Book of the 5th Reg Symp Int Fossil Algae Association, 1–3/09/2005. St Trent Sci Nat Acta Geol suppl 80(2003):7–14Google Scholar
  13. Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoecol Palaeoclimatol 295:258–280CrossRefGoogle Scholar
  14. Bassi D, Cosovic V, Papazzoni CA, Ungaro S (2000) The Colli Berici. In: Bassi D (ed) Shallow water benthic communities at the middle–upper eocene boundary. Southern and North-Eastern Italy, Slovenia, Croatia, Hungary. Field Trip Guidebook of the 5th Meeting IGCP 393 IUGS-UNESCO, Ann Univ Ferrara Suppl Sci Terra, pp 43–57Google Scholar
  15. Bassi D, Carannante G, Murru M, Simone L, Toscano F (2006) Rhodalgal/bryomol assemblages in temperate type carbonate, channelised depositional systems: the Early Miocene of the Sarcidano area (Sardinia, Italy). In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental control. Special Publication 255. Geological Society London, London, pp 35–52Google Scholar
  16. Bassi D, Bianchini G, Mietto O, Nebelsick JH (2008) Southern Alps in Italy: Venetian pre-Alps. In: McCann T (ed) The geology of Central Europe. Geological Society London, London, pp 56–62Google Scholar
  17. Bassi D, Nebelsick JH, Checconi A, Hohenegger J, Iryu Y (2009) Present-day and fossil rhodolith pavements compared: their potential for analysing shallow-water carbonate deposits. Sediment Geol 214:74–84CrossRefGoogle Scholar
  18. Bassi D, Carannante G, Checconi A, Simone L, Vigorito M (2010) Sedimentological and palaeoecological integrated analysis of a Miocene canalized coralline red algal carbonate margin (Matese Mountains, Central-Southern Apennines, Italy). Sediment Geol 230:105–122CrossRefGoogle Scholar
  19. Bassi D, Iryu I, Nebelsick JH (2012) To be or not to be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. J Coast Res 28:288–295CrossRefGoogle Scholar
  20. Bassi D, Nebelsick JH, Puga-Bernabéu Á, Luciani V (2013) Middle Eocene larger nummulites palaeohighs and their offshore re-deposition: a case study from the middle Eocene of the venetian area, northeast Italy. Sediment Geol 297:1–15CrossRefGoogle Scholar
  21. Bassi D, Iryu Y, Braga JC, Takayanagi H, Tsuji T (2013) Bathymetric distribution of ichnocoenoses from recent subtropical algal nodules off Fraser Island, eastern Australia. Palaeogeogr Palaeoecol Palaeoclimatol 369:58–66CrossRefGoogle Scholar
  22. Basso D, Tomaselli V (1994) Palaeoecological potentiality of rhodoliths: a Mediterranean case history. In: Matteucci L, Carboni MG, Pignatti JS (eds) Studies on ecology and paleoecology of benthic communities. Boll Soc Paleontol Ital spec vol 2:17–27Google Scholar
  23. Bosence DWJ (1976) Ecological studies on two unattached coralline algae from Western Irela1nd. Palaeontology 19:365–395Google Scholar
  24. Bosence DWJ (1983a) The occurrence and ecology of recent rhodoliths – a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 225–242CrossRefGoogle Scholar
  25. Bosence DWJ (1983b) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  26. Bosence DWJ (1991) Coralline algae: mineralisation, taxonomy, and palaeoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 98–113CrossRefGoogle Scholar
  27. Brachert TC, Betzler C, Braga JC, Martín JM (1998) Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, Southern Spain). Palaios 13:459–475CrossRefGoogle Scholar
  28. Braga JC (2003) Application of botanical taxonomy to fossil coralline algae (Corallinales, Rhodophyta). Acta Micropal Sin 20:47–56Google Scholar
  29. Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. Coral Reefs 23:547–558Google Scholar
  30. Braga JC, Martín JM, Wood JL (2001) Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic–carbonate platform deposits (Vera Basin, Almería, southern Spain). Sedimentology 48:99–116CrossRefGoogle Scholar
  31. Braga JC, Martín JM, Betzler C, Aguirre J (2006) Models of temperate carbonate deposition in Neogene basins in SE Spain: a synthesis. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Special Publication 255. Geological Society London, London, pp 121–135Google Scholar
  32. Braga JC, Aguirre J, Esteban J (2009a) Calcareous algae of Cabo de Gata–Níjar Nature Park. Field Guide, ACUAMED-Consejería Medio Ambiente. Junta de Andalucía, Madrid (Spanish text 143 pp, English text 63 pp)Google Scholar
  33. Braga JC, Vescogni A, Bosellini FR, Aguirre J (2009b) Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean. Messinian reefs. Palaeogeogr Palaeoclimatol Palaeoecol 275:113–128Google Scholar
  34. Braga JC, Bassi D, Piller WE (2010a) Palaeoenviromental significance of Oligocene–Miocene coralline red algae – a review. In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene–Miocene climatic transition. Special Publication 42. International Association of Sedimentologists, Wiley-Blackwell, pp 165–182Google Scholar
  35. Braga JC, Martín JM, Aguirre J, Baird CD, Grunnaleite I, Jensen NB, Puga-Bernabéu A, Sælen G, Talbot MR (2010b) Middle–Miocene (Serravallian) temperate carbonates in a seaway connecting the Atlantic Ocean and the Mediterranean Sea (North Betic Strait, S Spain). Sediment Geol 225:19–33Google Scholar
  36. Carannante G (1982) Modello deposizionale e diagenetico di un livello fosfatico del Miocene carbonatico dell’Appennino Campano. Rend Soc Geol It 5:15–20Google Scholar
  37. Carannante G, Vigorito M (2001) A channelised temperate-type carbonate margin: geometries and controlling factors. Géol Mediterr 28:41–44Google Scholar
  38. Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. In: Nelson CS (ed) Nontropical shelf carbonates – modern and ancient. Sediment Geol 60:333–346Google Scholar
  39. Casula G, Cherchi A, Montadert L, Murru M, Sarrja E (2001) The Cenozoic grabens system of Sardinia (Italy): geodynamic evolution from new seismic and field data. Mar Petrol Geol 18:863–888CrossRefGoogle Scholar
  40. Checconi A, Bassi D, Monaco P, Carannante G (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sediment Geol 225:50–66CrossRefGoogle Scholar
  41. Cherchi A, Montadert L (1982) The Oligo-Miocene rift of Sardinia and the early history of the western Mediterranean basin. Nature 298:736–739CrossRefGoogle Scholar
  42. Cherchi A, Murru M, Simone L (2000) Miocene carbonate factories in the syn-rift Sardinia Graben sub-basins (Italy). Facies 43:223–240CrossRefGoogle Scholar
  43. Ciampo G, Sgrosso I, Ruggero Taddei E (1987) L’inizio della sedimentazione terrigena nel Matese, nei Monti del Casertano e nei Monti di Suio. Boll Soc Geol Ital 106:323–330Google Scholar
  44. D’Argenio B, Pescatore T, Scandone P (1973) Schema geologico dell’Appennino Meridionale (Campania, Lucania). Acc Naz Lincei 183:49–72Google Scholar
  45. Davaud E, Septfontaine M (1995) Post-mortem onshore transportation of epiphytic foraminifera: recent example from the Tunisian coastline. J Sediment Res 65:136–142Google Scholar
  46. Fabiani R (1915) Il Paleogene del Veneto. Mem Ist Geol Regia Univ Padova 3:1–336Google Scholar
  47. Foster MS, Riosmena-Rodriguez R, Steller DS, Woelkerling WJ (1997) Living rhodolith beds in the Gulf of California and their implications for palaeoenvironmental interpretation. In: Johnson ME, Ledesma-Vázquez J (eds) Pliocene carbonates and related facies flaking the Gulf of California, Baja California. Special paper 318. Geological Society of America, Boulder, pp 127–139Google Scholar
  48. Funedda A, Oggiano G, Pasci S (2000) The Logudoro basin: a key area for the tectono-sedimentary evolution of North Sardinia. Boll Soc Geol Ital 119:31–38Google Scholar
  49. Gischler E, Pisera A (1999) Shallow water rhodoliths from Belize reefs. N Jb Geol Paläont (Abh) 214:71–93Google Scholar
  50. Graham DJ, Midglay NG (2000) Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method. Earth Surf Proc Land 25:1473–1477CrossRefGoogle Scholar
  51. Harvey AS, Broadwater ST, Woelkerling WJ, Mitrovski PJ (2003) Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. J Phycol 39:988–998CrossRefGoogle Scholar
  52. Hinojosa-Arango G, Maggs CA, Johnoson MP (2009) Like a rolling stone: the mobility of maerl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90:517–528CrossRefGoogle Scholar
  53. Iryu Y, Nakimori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sediment Geol 99:243–258CrossRefGoogle Scholar
  54. Iryu Y, Bassi D, Woelkerling W (2012) Typification and reassessment of seventeen species of coralline red algae (Corallinales and Sporolithales, Rhodophyta) described by W. Ishijima during 1954–1978. J Syst Palaeontol 10:171–209CrossRefGoogle Scholar
  55. Johnson ME, da Silva CM, Santos A, Baarli BG, Cachão M, Mayoral EJ, Rebelo AC, Ledesma-Vázquez J (2011) Rhodolith transport and immobilization on a volcanically active rocky shore: middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 300:113–127CrossRefGoogle Scholar
  56. Johnson ME, Baarli GB, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral EJ, Ramalho RS, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: Pleistocene and Recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:83–100CrossRefGoogle Scholar
  57. Lirer F, Persico D, Vigorito M (2005) Calcareous plankton biostratigraphy and age of the middle Miocene deposits of Longano Formation (eastern Matese Mountains, southern Apennines). Riv Ital Paleontol Strat 111:91–108Google Scholar
  58. Littler DS, Littler MM (2003) South Pacific reef plants. A divers’ guide to the plant life of South Pacific coral reefs. OffShore Graphics, Washington, DCGoogle Scholar
  59. Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34CrossRefGoogle Scholar
  60. Marrack EC (1999) The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 14:159–171CrossRefGoogle Scholar
  61. Márton E, Zampieri D, Kázmér M, Dunkl I, Frisch W (2011) New Paleocene–Eocene paleomagnetic results from the foreland of the Southern Alps confirm decoupling of stable Adria from the African plate. Tectonophysics 504:89–99CrossRefGoogle Scholar
  62. Matsuda S, Iryu Y (2011) Rhodoliths from deep fore-reef to shelf areas around Okinawa-jima, Ryukyu Islands, Japan. Mar Geol 282:215–230CrossRefGoogle Scholar
  63. Meldahl KH, Flessa KW (1990) Taphonomic pathways and comparative biofacies and taphofacies in a recent intertidal/shallow shelf environment. Lethaia 23:43–60CrossRefGoogle Scholar
  64. Minnery GA, Rezak R, Bright TJ (1985) Depth zonation and growth form of crustose coralline algae: Flower Garden Banks, northwestern Gulf of Mexico. In: Toomey DF, Nitecki MH (eds) Paleoalgology. Springer, Berlin, pp 237–247CrossRefGoogle Scholar
  65. Murru M, Simone L, Vigorito M (2001) Carbonate channel network in the Miocene syn-rift Sardinia basins. Géol Mediterr 28:133–137Google Scholar
  66. Murru M, Bassi D, Simone L (2015) Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: a case history from the Sassari area (Sardinia, Italy). Sediment Geol 326:94–108CrossRefGoogle Scholar
  67. Nebelsick J, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algal dominated shelf carbonates. In: Insalaco E, Skelton P, Palmer T (eds) Carbonate platform systems: components and interactions. Special Publication 178. Geological Society London, London, pp 89–107Google Scholar
  68. Nebelsick JH, Rasser M, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216CrossRefGoogle Scholar
  69. Nebelsick JH, Bassi D, Rasser MW (2011) Microtaphofacies: exploring the potential for taphonomic analysis in carbonates. In: Allison P, Bottjer DJ (eds) Taphonomy: process and bias through time, vol 32, 2nd edn, Topics in Geobiology. Springer Science+Business, Dordrecht, pp 337–377Google Scholar
  70. Nelson WA, Sutherland JE, Farr TJ, Hart DR, Neill KF, Kim HJ, Yoon HS (2015) Multi-gene phylogenetic analyses of New Zealand coralline algae: Corallinapetra novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov. J Phycol 51:454–468CrossRefGoogle Scholar
  71. Nitsch F, Nebelsick JH, Bassi D (2015) Constructional and destructional patterns – void classification of rhodoliths from Giglio Island, Italy. Palaios 30:680–691CrossRefGoogle Scholar
  72. Papazzoni CA, Sirotti A (1995) Nummulite biostratigraphy at the Middle/Upper Eocene boundary in the northern Mediterranean area. Riv Ital Paleontol Strat 101:63–80Google Scholar
  73. Payros A, Pujalte V (2008) Calciclastic submarine fans: an integrated overview. Earth-Sci Rev 86:203–246CrossRefGoogle Scholar
  74. Penrose D (1991) The genus Spongites (Corallinaceae, Rhodophyta): S. fruticulosus the type species, in southern Australia. Phycologia 30:438–448CrossRefGoogle Scholar
  75. Penrose D, Woelkerling WJ (1991) Pneophyllum fragile in southern Australia: implications for generic concepts in the Mastophoroideae (Corallinaceae, Rhodophyta). Phycologia 30:495–506CrossRefGoogle Scholar
  76. Perry CT (2005) Morphology and occurrence of rhodoliths in siliciclastic, intertidal environments from a high latitude reef setting, southern Mozambique. Coral Reefs 24:201–207CrossRefGoogle Scholar
  77. Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Palaeoecol 206:21–39CrossRefGoogle Scholar
  78. Reid RP, MacIntyre IG (1988) Foraminiferal–algal nodules from the Eastern Caribbean: growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios 3:424–435CrossRefGoogle Scholar
  79. Reijmer JJG, Everaars JSL (1991) Carbonate platform facies reflected in carbonate basin facies (Triassic, Northern Calcareous Alps, Austria). Facies 25:253–278CrossRefGoogle Scholar
  80. Renema W, Beaman RJ, Webster JM (2013) Mixing of relict and modern tests of larger benthic foraminifera on the Great Barrier Reef shelf margin. Mar Micropaleontol 101:68–75CrossRefGoogle Scholar
  81. Rico-García A, Aguirre J, González-Delgado JA (2008) Taphonomy and taphofacies models of the Pliocene deposits of Vejer de la Frontera (Cádiz, SW Spain). Geobios 41:543–558CrossRefGoogle Scholar
  82. Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310Google Scholar
  83. Schweighauser J (1953) Mikropaläontologische und stratigraphische Untersuchungen im Paleocaen und Eocaen des Vicentin (Norditalien). Schweiz Paläontol Abh 70:1–97Google Scholar
  84. Sgrosso I (1998) Possibile evoluzione cinematica nell’orogene Centro-Sud-Appenninico. Boll Soc Geol It 117:679–724Google Scholar
  85. Simone L, Bassi D, Carannante G, Cherchi A (2012) Rudist-bearing rhodalgal facies in the post-Turonian recovery of the periTethyan carbonate systems: the case history from the Nurra Region (northwestern Sardinia, Italy). Geodiversitas 34:167–187CrossRefGoogle Scholar
  86. Sneed ED, Folk RL (1958) Pebbles in the Colorado river, Texas: a study in particle morphogenesis. J Geol 66:114–150CrossRefGoogle Scholar
  87. Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, B.C.S., México. J Exp Mar Biol Ecol 194:201–212CrossRefGoogle Scholar
  88. Ungaro S (1969) Étude micropaléontologique et stratigraphique de l’Éocène supérieur (Priabonien) de Mossano (Colli Berici). Mém Bull Rech Geol Min 69, Colloque sur l’Éocène 3:267–280Google Scholar
  89. Vardabasso S (1963) Die ausseralpine Taphrogenese im Kaledonisch-variszisch konsolidierten Sardischen Vorlande. Sonderdruck Geol Rundsch 53:613–630CrossRefGoogle Scholar
  90. Vigorito M, Murru M, Simone L (2005) Anatomy of a channel system and related fan in a foramol/rhodalgal carbonate sedimentary setting: the case history from the Miocene syn-rift Sardinia Basin, Italy. Sediment Geol 174:1–30CrossRefGoogle Scholar
  91. Vigorito M, Murru M, Simone L (2006) Architectural patterns in a multistorey mixed carbonate–siliciclastic submarine channel, Porto Torres Basin, Miocene, Sardinia, Italy. Sediment Geol 186:213–236CrossRefGoogle Scholar
  92. Vigorito M, Murru M, Simone L (2010) Carbonate production in rift basins: models for platform inception, growth and dismanting, and for shelf to basin sediment transport, Miocene Sardinia Rift Basin, Italy. In Mutti M, Piller W, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition. Special Publication 42. International Association of Sedimentologists, Wiley-Blackwell, pp 257–282Google Scholar
  93. Woelkerling WJ, Harvey A (1992) Mesophyllum incisum (Corallinaceae, Rhodophyta) in southern Australia: implications for generic and specific delimitation in the Melobesioideae. Brit Phycol J 27:381–399CrossRefGoogle Scholar
  94. Woelkerling WJ, Irvine LM (1986) General characteristics of nongeniculate Corallinaceae. In: The Coralline Red algae: an analysis of the genera and subfamilies of nongeniculate corallinacee. British Museum (Natural History), London. xi + 268 ppGoogle Scholar
  95. Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293CrossRefGoogle Scholar
  96. Wonham JP, Jayr S, Mougamba R, Chuilon P (2000) 3D sedimentary evolution of a canyon fill (Lower Miocene-age) from the Mandorove Formation, offshore Gabon. Mar Petrol Geol 17:175–197CrossRefGoogle Scholar
  97. Yesares-García J, Aguirre J (2004) Quantitative taphonomic analysis and taphofacies in lower Pliocene temperate carbonate–siliciclastic mixed platform deposits (Almería-Níjar basin, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 207:83–103CrossRefGoogle Scholar
  98. Yordanova EK, Hohenegger J (2002) Taphonomy of larger foraminifera: relationships between living individuals and empty tests on flat reef slopes (Sesoko Island Japan). Facies 46:169–204CrossRefGoogle Scholar
  99. Zuschin M, Piller WE (1997) Gastropod shells recycled – an example from rocky tidal flat in the northern Red Sea. Lethaia 30:127–134CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Davide Bassi
    • 1
  • Lucia Simone
    • 2
  • James H. Nebelsick
    • 3
  1. 1.Dipartimento di Fisica e Scienze della TerraUniversità di FerraraFerraraItaly
  2. 2.Dipartimento di Scienze della TerraUniversity of Napoli Federico IINaplesItaly
  3. 3.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations