Advertisement

Economic Importance of Coralline Carbonates

  • Giovanni Coletti
  • Daniela Basso
  • Alfredo Frixa
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 15)

Abstract

Carbonate materials are important economic resources: limestones are excellent reservoirs and valuable building stones; unconsolidated sediments may be used as a viable source of calcium carbonate for soil conditioning. Since Late Cretaceous coralline algae are one of the most important shallow-water carbonate producers. Sediment production and deposition in carbonate platforms are controlled by physical, chemical and biotic factors. Chemical and biotic factors rule over sediment texture, composition, distribution and early diagenetic processes, and consequently they have a major impact over limestone properties after diagenesis, especially over porosity and permeability. Porosity and permeability in turn control limestone mechanical properties, its durability and its reservoir potential. Thus, understanding the factors controlling formation and fate of coralline-algal carbonate factories is necessary for both sustainable management of the coralline-dominated marine habitats and profitable exploitation of reservoirs and quarries.

Keywords

Coralline Alga Benthic Foraminifer Hydrocarbon Exploration Pore Interconnection Asmari Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the COCARDE – European Research Network (ESF) for the opportunity to discuss and share the knowledge and the concepts that inspired this manuscript. We would like to thank an anonymous referee for his constructive revision of an early draft of the manuscript, and Alessandro Cavallo, Milano-Bicocca University, for his useful suggestions and support. The first author has been funded through a PhD fellowship from University of Milano-Bicocca.

References

  1. AA.VV. (2011) L’industria della calce e del Cemento in Ozzano. La Terra Promessa, NovaraGoogle Scholar
  2. Alexandersson T (1978) Destructive diagenesis of carbonates sediments in the eastern Skagerrak, North sea. Geology 6:324–327CrossRefGoogle Scholar
  3. Amirshankarami M, Vaziri-Moghaddam H, Taheri A (2007) Sedimentary facies and sequence stratigraphy of the Asmari Formation at Chaman-Bolbol, Zagros Basin, Iran. Asian J Earth Sci 29:947–959CrossRefGoogle Scholar
  4. Angrisani AC, Calcaterra D, Colella A, De Gennaro M (2010) Stone properties and weathering phenomena of the Miocene Cusano Limestone (a.k.a. Perlato Royal Coreno): the case of the basament of Santa Chiara Monastery bell tower (Naples-Italy). Period Mineral Spec Issue 79:1–10Google Scholar
  5. Angrisani AC, Calcaterra D, Cappelletti P, Colella A, Parente M, Přikryl R, De Gennaro M (2011) Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy). Ital J Geosci 130(1):75–92Google Scholar
  6. Basso D (2012) Carbonate production by calcareous red algae and global change. Geodiversitas 34(1):13–33CrossRefGoogle Scholar
  7. Basso D, Vrsaljko D, Grgasović T (2008) The coralline flora of a Miocene maërl: the Croatian “Litavac”. Geol Croat 61(2–3):333–340Google Scholar
  8. Blunden G, Binns WW, Perks F (1975) Commercial collection and utilization of Maërl. Econ Bot 29:140–145CrossRefGoogle Scholar
  9. Blunden G, Sheelagh A, Campbell A, Smith JR, Guiry MD, Heission CC, Griffin RL (1997) Chemical and physical characterization of calcified red algal deposits known as maërl. J Appl Phycol 9:11–17CrossRefGoogle Scholar
  10. Borg G, Borg BE (2000) From small quarries to large temples, the enigmatic source of limestone for the Apollo Temple at Didyma, W-Anatolia. In: Lazzarini L (ed) Interdisciplinary studies on ancient stone. ASMOSIA, VI international conference, S: 427–436Google Scholar
  11. Borromeo O, Miraglia S, Sartorio D, Bolla EM, Ortenzi A, Sandro R, Castellanos C, Villalobos R (2011) The Perla world-class giant gas field, Gulf of Venezuela; depositional and diagenetic controls on reservoir quality in early Miocene carbonates. AAPG International Conference and Exhibition, MilanGoogle Scholar
  12. Bourrouilh Le Jan FG, Hottinger LC (1988) Occurrence of rhodoliths in the tropical Pacific – a consequence of Mid-Miocene paleo-oceanographic change. Sediment Geol 60:355–367CrossRefGoogle Scholar
  13. Braga JC, Bassi D, Piller WE (2010) Paleoenvironmental significance of Oligocene-Miocene coralline red algae – a review. In: Mutti M, Piller WE, Betzler C (eds) Carbonate system during the Oligocene-Miocene Climatic Transition. Int Assoc Sedimentol Spec Publ 42Google Scholar
  14. Büyükutku AG (2009) Reservoir properties of Karaisalı formation in the Adana Basin, Southern Turkey. J Pet Sci Eng 65:33–44CrossRefGoogle Scholar
  15. Calvo JP, Regueiro M (2010) Carbonate rocks in the Mediterranean region – from classical to innovative use of building stone. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past. Geol Soc Spec Publ 331: 27–35Google Scholar
  16. Canfield DE, Raiswell (1991) Carbonate precipitation and dissolution, its relevance to fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology, vol 9Google Scholar
  17. Carannante G, Simone L (1996) Rhodolith facies in the central-southern Apennines mountains, Italy. In: Franseen EK, Esteban M, Ward W, Rouchy J (eds) Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions. SEPM Concepts Sedimentology and Paleontology 5Google Scholar
  18. Chave KE (1954) Aspects of biogeochemistry of magnesium. 1. Calcareous marine organism. J Geol 62:266–599CrossRefGoogle Scholar
  19. Civitelli G, Brandano M (2005) Atlante delle litofcies e modello deposizionale dei Calcari a Briozoi e Litotamni nella Piattaforma carbonatica laziale-abruzzese. Boll Soc Geol Ital 124:611–643Google Scholar
  20. Cultrone G, Russo LG, Calabrò C, Uroševič M, Pezzino A (2008) Influence of pore system characteristic on limestone vulnerability: a laboratory study. Environ Geol 54:1271–1281CrossRefGoogle Scholar
  21. De Grave S, Fazakerley H, Kelly L, Guiry MD, Ryan M, Walshe J (2000) A study of selected Maërl banks in Irish waters and their potential for sustainable extraction. Marine Resource Series 10, Marine InstituteGoogle Scholar
  22. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum Geologist Memoir. 1:108–121Google Scholar
  23. Flügel E (2009) Microfacies of carbonate rocks: analysis interpretation and application. Springer, 1007 ppGoogle Scholar
  24. Fournier F, Borgomano J (2007) Geological significance of seismic reflections and imaging of the reservoir architecture in the Malampaya gas field (Philippines). AAPG Bull 91:235–258Google Scholar
  25. Friedman GM (1964) Early diagenesis and lithification in carbonate sediments. J Sediment Petrol 34(4):777–813Google Scholar
  26. Gaudon P (2010) Guide Durabilité & Compatibilité de pierres régionales. École des Mines d’Alès, http://pierresud.brgm.fr. Accessed 10 Oct 2013
  27. Halfar J, Mutti M (2005) Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology 33(6):481–484CrossRefGoogle Scholar
  28. Hall-Spencer J (2005) Ban on maërl extraction. Mar Pollut Bull 50:121–124CrossRefGoogle Scholar
  29. Heubeck C, Story K, Peng P, Sullivan C, Duff S (2004) An integrated reservoir study of the Liuhua 11-1 field using high-resolution three-dimensional seismic data set. AAPG Mem 81:149–168Google Scholar
  30. Holzer R, Laho M, Durmenková T (2004) Ancient building stone sources of Bratislava’s monuments. In: Přikryl R (ed) Dimension stone-new perspective for a traditional building material. Balkema PublishersGoogle Scholar
  31. Hover VC, Walter LM, Peacor DR (2001) Early marine diagenesis of biogenic aragonite and Mg-calcite new constraints from high-resolutions STEM and AEM analyses of modern platform carbonates. Chem Geol 175:221–248CrossRefGoogle Scholar
  32. LeNoble ME, Blevins DG, Sharp RE, Cumbie BG (1996) Prevention of aluminum toxicity with supplemental boron, maintenance of root elongation and cellular structure. Plant Cell Environ 19:1132–1142CrossRefGoogle Scholar
  33. Mancin N, Ceriani A, Tagni F, Brambilla G (2001) The Ternate formation (northern Italy): micropaleontological content and sedimentary petrography. Atti Ticinesi Sci Terra 42:37–46Google Scholar
  34. Miglio BF, Richardson DM, Yates TS, West D (2000) Assessment of the durability of porous limestones: specification and interpretation of test data in UK practice. In: Hoigard KR (ed) Dimension stone cladding: design, construction, evaluation and repair. American Soc for Testing and Material, West ConshohockenGoogle Scholar
  35. Moore CH (2001) Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework. Dev Sedimentol 55Google Scholar
  36. Oates JAH (1998) Lime and limestone. Chemistry and technology. Production and uses. Wiley, 455 ppGoogle Scholar
  37. Pedley HM (1981) Sedimentology and paleoenvironment of the southeast Sicilian Tertiary platform carbonates. Sediment Geol 28:273–291CrossRefGoogle Scholar
  38. Perry OR, Choquette PW (1985) Carbonate petroleum reservoirs. Springer, New YorkGoogle Scholar
  39. Primavori P (1999) Pianeta Pietra. Giorgio Zusi, VeronaGoogle Scholar
  40. Rajabzadeh MA, Moosavinasab Z, Rakhshandehroo G (2012) Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech Rock Eng 45:113–122CrossRefGoogle Scholar
  41. Reijers TJA, Hsü KJ (1986) Manual of carbonate sedimentology: a lexicographical approach. Academic Press, LondonGoogle Scholar
  42. Reynaud J, James NP (2012) The Miocene Sommières basin, SE France; Bioclastic carbonates in a tide dominated depositional system. Sediment Geol 282:360–373CrossRefGoogle Scholar
  43. Rothert E, Eggers T, Cassar J, Ruedrich J, Fitzner B, Siegsmund S (2007) Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. In: Přikryl R, Smith BJ (eds) Building stone decay, from diagnosis to conservation. Geol Soc London Spec Publ, London, 271Google Scholar
  44. Safti B, Veli J, Sztanó O, Juhász G, Ivković Z (2003) Tertitary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geol Croat 56(1):101–122Google Scholar
  45. Sahraeyan M, Bahrami M, Arzaghi S (2013) Facies analysis and depositional environment of the Oligo-Miocene Asmari Formation, Zagros Basin, Iran. Geosci Front 5:103–112Google Scholar
  46. Saller AH, Moore CH (1989) Meteoric diagenesis, marine diagenesis and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands. Sediment Geol 63:253–272CrossRefGoogle Scholar
  47. Salomidi M, Katsanevakis S, Borja A, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega Fernàndez T (2012) Assessement of goods and services, vulnerability and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr Mar Sci 13(1):49–88CrossRefGoogle Scholar
  48. Sassone P (2005) La “Pietra da Cantoni” del Monferrato Casalese (AL): ipotesi di ripresa produttiva per la conservazione della tradizione edilizia locale. GEAM, June–Sept 2005: 15–24Google Scholar
  49. Sattler U, Zampetti V, Schlager W, Immenhauser A (2004) Late leaching under deep burial conditions: a case of study from the Miocene Zhujiang Carbonate Reservoir, South China Sea. Mar Pet Geol 21:977–992CrossRefGoogle Scholar
  50. Siegesmund S, Török A, Hüpers A, Müller C, Klemm W (2007) Mineralogical, geochemical and microfabric evidences of gypsum crusts: a case study from Budapest. Environ Geol 52:385–397CrossRefGoogle Scholar
  51. Steiger M (2005) Crystal growth in porous materials II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481CrossRefGoogle Scholar
  52. Timpanelli M (2003) La Pietra da Cantoni del Monferrato Casalese: salvaguardia e valorizzazione di un patrimonio scientifico, storico e culturale. GEAM, Dec 2003: 17–26Google Scholar
  53. Török A (2002) Oolitic limestone in polluted atmospheric environment in Budapest: weathering phenomena and alteration in physical properties. In: Siegsmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies. Geol Soc London Spec Publ London, 205Google Scholar
  54. Török A, Rozgonyi N, Přikryl R, Přikrylová J (2004) Leithakalk: the ornamental and building stone of Central Europe, an overview. In: R Přikryl (ed) Dimension stone-new perspective for a traditional building material. Balkema PublishersGoogle Scholar
  55. Tucker ME (1981) Sedimentary petrology: an introduction. Blackwell Scientific PublicationsGoogle Scholar
  56. Vannucci S, Alessandrini G, Cassar J, Tampone G, Vannucci ML (1994) The prehistoric megalithic temples of the Maltese Islands: causes and processes of deterioration of Globigerina limestone. In: V Fassina, H Ott, F Zezza (eds) Conservation of monuments in the Mediterranean Basin, Proceedings of the 3rd international symposium, Soprintendenza di Beni Artistici e Storici di Venezia, Venice, ItalyGoogle Scholar
  57. Vaziri-Moghaddam H, Kimiagari M, Taheri A (2006) Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies 52:41–51CrossRefGoogle Scholar
  58. Vaziri-Moghaddam H, Kalanat B, Taheri A (2011) Sequence stratigraphy and depositional environment of the Oligocene deposits at Firozabad section, southwest of Iran based on microfacies analysis. Geopersia 1(1):71–82Google Scholar
  59. Violanti D, Frixa A, Natta C, Sassone P, Trenkwalder S (2008) Geologia e micropaleontologia della “Pietra da Cantoni” nel Monferrato Casalese (Piemonte, Italia NW): Esperienze di divulgazione, turismo culturale e tutela del territorio: Le giornate di Paleontologia, Siena, 9–12 Sept 2008Google Scholar
  60. Vrsaljko D, Hećimović I, Avanić R (2007a) Miocene deposits of Northern Croatia. In: Grgasović T, Vlahović I (eds) Ninth international symposium on fossil algae, field trip guidebook and abstracts. Croat Geol Survey, pp 143–153Google Scholar
  61. Vrsaljko D, Marković S, Grgasović T (2007b) Cathedral of the assumption of the Blessed Virgin Mary. In: Grgasović T, Vlahović I (eds) Ninth international symposium on fossil algae, field trip guidebook and abstracts. Croat Geol Survey, p 155Google Scholar
  62. Wennberg OP, Svånå T, Azizzadeh A, Aqrawi AMM, Brockbank P, Lyslo KB, Ogilvie S (2006) Fracture intensity vs mechanical stratigraphy in platform top carbonates the Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran. Pet Geosci 12:235–246CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Giovanni Coletti
    • 1
  • Daniela Basso
    • 2
  • Alfredo Frixa
    • 3
  1. 1.Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della TerraUniversità di Milano BicoccaMilanoItaly
  2. 2.Department of Earth and Environmental SciencesUniv. of Milano-BicoccaMilanItaly
  3. 3.GeologistSan Giuliano MilaneseItaly

Personalised recommendations