Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds

Part of the Coastal Research Library book series (COASTALRL, volume 15)

Abstract

Coralline algae are expected to be adversely impacted by global warming and ocean acidification, although there has been no synthesis of these effects on habitat-forming species. We compiled published responses of maërl and rhodolith-forming species to ocean acidification and warming. Although the response is variable among species, their recruitment, growth, health and survival are usually negatively affected under elevated CO2. Most studies show that coralline algal calcification is adversely affected under near-future ocean acidification scenarios and that in combination with a 1–3 °C increase in seawater temperature this has an even larger impact. Most research has involved relatively short-term experiments on single species, which makes it difficult to predict long-term effects at the ecosystem level because the impact of global changes on coralline algal habitats will depend on the direct impacts on individual species and the indirect effects of altered interspecific interactions. Studies in areas with naturally high CO2 levels show that coralline algae are adversely affected by long-term acidification through increased competition from non-calcified competitors. Coralline algal habitats such as vermetid reefs, coralligene and beds of rhodoliths or maerl are likely to decline in the near future as higher CO2 levels benefit fleshy algae and corrosive waters reduce calcareous habitat complexity and associated biodiversity.

Keywords

Ocean Acidification Crustose Coralline Alga Coralline Alga Ocean Warming Elevated pCO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the reviewer for valuable comments and suggestions on a previous version of this manuscript. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) and EU’Mediterranean Sea Acidification under a changing climate’ project (MedSeA) which received funding from the European Community (grant agreements 211384 and 265103).

References

  1. Adey WH (1973) Temperature control of reproduction and productivity in a subarctic coralline alga. Phycologia 12:111–118CrossRefGoogle Scholar
  2. Agegian CR (1985) The biogeochemical ecology of Porolithon gardineri (Foslie). PhD thesis, University of Hawaii, HonoluluGoogle Scholar
  3. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7:e35171CrossRefGoogle Scholar
  4. Andersson AJ, MacKenzie FT, Lerman A (2005) Coastal ocean carbonate ecosystems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918CrossRefGoogle Scholar
  5. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446CrossRefGoogle Scholar
  6. Anthony KRN, Kleypas JA, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666CrossRefGoogle Scholar
  7. Arnold T, Mealey C, Leahey H et al (2012) Ocean acidification and the loss of protective phenolics in seagrasses. PLoS One 7(4):e35107CrossRefGoogle Scholar
  8. Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42:606–612CrossRefGoogle Scholar
  9. Borowitzka MA (1981) Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and Amphiroa foliacea. Mar Biol 62:17–23CrossRefGoogle Scholar
  10. Borowitzka MA (1987) Calcification in algae: mechanism and the role of metabolism. Crit Rev Plant Sci 6:1–45CrossRefGoogle Scholar
  11. Bradassi F, Cumani F, Bressan G, Dupont S (2013) Early reproductive stages in the crustose coralline alga Phymatolithon lenormandii are strongly affected by mild ocean acidification. Mar Biol 160:2261–2269CrossRefGoogle Scholar
  12. Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87CrossRefGoogle Scholar
  13. Calosi P, Rastrick SPS, Graziano M, Thomas SC, Baggini C, Carter HA, Hall-Spencer JM, Milazzo M, Spicer JI (2013) Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar Pollut Bull 73:470–484CrossRefGoogle Scholar
  14. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870CrossRefGoogle Scholar
  15. Cigliano M, Gambi MC, Rodolfo Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502CrossRefGoogle Scholar
  16. Comeau S, Carpenter RC, Edmunds PJ (2012) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B 280:20122374CrossRefGoogle Scholar
  17. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398CrossRefGoogle Scholar
  18. Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc Lond B Biol Sci 277:1409–1415CrossRefGoogle Scholar
  19. Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144CrossRefGoogle Scholar
  20. Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL (2013a) Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc R Soc B 280:20122201CrossRefGoogle Scholar
  21. Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL (2013b) Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnol Oceanogr 58:121–130CrossRefGoogle Scholar
  22. Diaz-Pulido G, Gouzezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162CrossRefGoogle Scholar
  23. Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39CrossRefGoogle Scholar
  24. Digby P (1977) Photosynthesis and respiration in the coralline algae, Clathromorphum circumscriptum and Corallina officinalis and the metabolic basis of calcification. J Mar Biol Assoc U K 57:1111–1124CrossRefGoogle Scholar
  25. Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15:338–346CrossRefGoogle Scholar
  26. Doropoulos C, Diaz-Pulido G (2013) High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar Ecol Prog Ser 475:93–99CrossRefGoogle Scholar
  27. Egilsdottir H, Noisette F, Noel LMLJ, Olafsson J, Martin S (2013) Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Mar Biol 160:2103–2112CrossRefGoogle Scholar
  28. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  29. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  30. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification on the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132Google Scholar
  31. Gao KS, Zheng YQ (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Chang Biol 16:2388–2398CrossRefGoogle Scholar
  32. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674CrossRefGoogle Scholar
  33. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  34. Hall-Spencer JM, Kelly J, Maggs CA (2010) Background document for maerl beds. OSPAR Commission, London, Publication 491/2010 36 pp. ISBN 978-1-907390-32-6Google Scholar
  35. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078CrossRefGoogle Scholar
  36. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  37. Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497Google Scholar
  38. Hofmann LC, Straub S, Bischof K (2012a) Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser 464:89–105CrossRefGoogle Scholar
  39. Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012b) Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Mar Biol 159:783–792CrossRefGoogle Scholar
  40. Hurd CL, Cornwall CE, Currie KI, Hepburn CD, McGraw CM, Hunter KA, Boyd P (2011) Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Glob Chang Biol 17:3254–3262CrossRefGoogle Scholar
  41. Ichiki S, Mizuta H, Yasui H, Yamamoto H (2001) Effects of irradiance and water temperature on the photosynthesis and growth of the crustose coralline alga Lithophyllum yessoense Foslie (Corallinales, Rhodophyceae). Bull Fischeries Sci Hokkaido Univ 52:103–109Google Scholar
  42. Inoue S, Kayanne H, Yamamoto S, Kurihara K (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683–687CrossRefGoogle Scholar
  43. IPCC (2013) Summary for policymakers. In Climate Change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press (in press)Google Scholar
  44. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  45. Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Biol Ecol 434–435:94–101CrossRefGoogle Scholar
  46. Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol 18:2792–2803CrossRefGoogle Scholar
  47. Johnson VR, Brownlee C, Rickaby REM, Graziano M, Milazzo M, Hall-Spencer JM (2013) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160:1813–1824CrossRefGoogle Scholar
  48. Kamenos NA, Burdett HL, Aloisio E, Findlay HS, Martin S, Longbone C, Dunn J, Widdicombe S, Calosi P (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol 19:3621–3628CrossRefGoogle Scholar
  49. Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429CrossRefGoogle Scholar
  50. Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar Ecol Prog Ser 274:183–189CrossRefGoogle Scholar
  51. Kato A, Hikami M, Kumagai NH, Suzuki A, Nojiri Y, Saka K (2013) Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Mar Environ Res. doi: 10.1016/j.marenvres.2013.10.010, in pressGoogle Scholar
  52. King RJ, Schramm W (1982) Calcification in the maerl coralline alga Phymatolithon calcareum: effects of salinity and temperature. Mar Biol 70:197–204Google Scholar
  53. Koch M, Bowes G, Ross C, Zhang XH (2012) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132CrossRefGoogle Scholar
  54. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13(11):1419–1434Google Scholar
  55. Kroeker KJ, Micheli F, Gambi MC (2013) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Chang 3:156–159CrossRefGoogle Scholar
  56. Kübler JE, Davison IR, Yarish C (1991) Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Br Phycol J 26:9–19CrossRefGoogle Scholar
  57. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  58. Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley Interscience, London, 527 ppGoogle Scholar
  59. McGraw CM, Cornwall CE, Reid MR, Currie KI, Hepburn CD, Boyd P, Hurd CL, Hunter KA (2010) An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnol Oceanogr Methods 8:686–694Google Scholar
  60. Martin S, Clavier J, Guarini J-M, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maerl community metabolism. Aquat Bot 83(3):161–174CrossRefGoogle Scholar
  61. Martin S, Castets MD, Clavier J (2006) Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat Bot 85:121–128CrossRefGoogle Scholar
  62. Martin S, Clavier J, Chauvaud L, Thouzeau G (2007) Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Mar Ecol Prog Ser 335:19–29CrossRefGoogle Scholar
  63. Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso J-P (2013) One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol 3(3):676–693CrossRefGoogle Scholar
  64. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100CrossRefGoogle Scholar
  65. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692CrossRefGoogle Scholar
  66. Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine F, Alessi C, Thiyagarajan V, Hall-Spencer JM, Chemello R (2014) Ocean acidification impairs vermetid reef recruitment. Sci Rep 4:4189CrossRefGoogle Scholar
  67. Nash MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J, Kline DI (2013) Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat Clim Chang 3:268–272CrossRefGoogle Scholar
  68. Nash MC, Troitzsch U, Opdyke BN, Trafford JM, Russell BD, Kline DI (2011) First discovery of dolomite and magnesite in living coralline algae and its geobiological implications. Biogeosciences 8:3331–3340CrossRefGoogle Scholar
  69. Noisette F, Egilsdottir H, Davoult D, Martin S (2013a) Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J Exp Mar Biol Ecol 448:179–187CrossRefGoogle Scholar
  70. Noisette F, Duong G, Six C, Davoult D, Martin S (2013b) Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49:746–757CrossRefGoogle Scholar
  71. Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, Rubal M, Cacabelos E, Veiga P, Sobrino C (2013) Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065–1079CrossRefGoogle Scholar
  72. Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cylce stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55:511–525CrossRefGoogle Scholar
  73. Peña V, Barbara I, Grall J, Maggs CA, Hall-Spencer JM (2014) The diversity of seaweeds on maerl in the NE Atlantic. Mar Biodivers. doi: 10.1007/s12526-014-0214-7 Google Scholar
  74. Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287CrossRefGoogle Scholar
  75. Porzio L, Garrard SL, Buia MC (2013) The effects of ocean acidification on early algal colonization stages at natural CO2 vents. Mar Biol 160:2247–2259CrossRefGoogle Scholar
  76. Ragazzola F, Foster LC, Form AU, Anderson PSL, Hansteen TH, Fietzke J (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Chang Biol 18:2804–2812CrossRefGoogle Scholar
  77. Ragazzola F, Foster LC, Form AU, Büscher J, Hansteen TH, Fietzke J (2013) Phenotypic plasticity of coralline algae in a high CO2 world. Ecol Evol 3(10):3436–3446Google Scholar
  78. Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Raven JA, Douglas S (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 225–244Google Scholar
  79. Raven JA, Johnston AM, Kübler JE, Korb RE, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift MA, Fredriksen S, Dunton KH (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378CrossRefGoogle Scholar
  80. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Agal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation. Phil Trans R Soc B 367:493–507CrossRefGoogle Scholar
  81. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  82. Rodolfo-Metalpa R, Houlbreque F, Tambutte E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312CrossRefGoogle Scholar
  83. Roleda MY, Boyd PW, Hurd CL (2012) Before ocean acidification: calcifier chemistry lessons. J Phycol 48:840–843CrossRefGoogle Scholar
  84. Russell BD, Thompson JA, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162CrossRefGoogle Scholar
  85. Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol 47:744–752CrossRefGoogle Scholar
  86. Russell BD, Connell SD, Uthicke S, Muehllehner N, Fabricius KE, Hall-Spencer JM (2013) Future seagrass beds: increased productivity leading to carbon storage? Mar Pollut Bull 73:463–469CrossRefGoogle Scholar
  87. Semesi IS, Kangwe J, Bjork M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84:337–341CrossRefGoogle Scholar
  88. Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. Mar Biol 52:217–225CrossRefGoogle Scholar
  89. Steller DL, Hernandez-Ayon JM, Riosmena-Rodriguez R, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Cienc Mar 33:441–456Google Scholar
  90. Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Pettay DT, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Chang Biol 10:3015–3025CrossRefGoogle Scholar
  91. Ware JR, Smith SV, Reaka-Kudla ML (1992) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130CrossRefGoogle Scholar
  92. Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832CrossRefGoogle Scholar
  93. Wiencke C, Bischof K (2012) Seaweed biology: novel insights into ecophysiology, ecology and utilization, vol 219, Ecological Studies. Springer, Berlin/HeidelbergGoogle Scholar
  94. Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:283–293CrossRefGoogle Scholar
  95. Wood R (1999) Reef evolution. Oxford University Press, Inc., New York, 414 ppGoogle Scholar
  96. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci U S A 105:18848–18853CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.CNRS, UMR 7144, Laboratoire Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoff CedexFrance
  2. 2.Sorbonne Universités, UPMC Université de Paris 06Station Biologique de RoscoffRoscoff CedexFrance
  3. 3.Marine Biology and Ecology Research CentrePlymouth UniversityPlymouthUK
  4. 4.Shimonda Marine Research CentreUniversity of TsukubaTsukubaJapan

Personalised recommendations