South Atlantic Rhodolith Beds: Latitudinal Distribution, Species Composition, Structure and Ecosystem Functions, Threats and Conservation Status

  • Gilberto M. Amado-Filho
  • Ricardo G. Bahia
  • Guilherme H. Pereira-Filho
  • Leila L. Longo
Part of the Coastal Research Library book series (COASTALRL, volume 15)


The largest continuous latitudinal distribution of rhodolith beds occur in the South Atlantic Ocean. Up to now rhodolith beds were referred exclusively to the western portion of the South Atlantic. Here we describe the recent advances in the South Atlantic taking into account latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. Rhodolith beds have been mapped and ecologically described from extensive areas of the continental shelf (Abrolhos Bank), seamounts tops (Vitoria Trindade Chain), insular shelfs of oceanic islands (Fernando de Noronha Archipelago) and atolls (Rocas Atoll). Thirty three species of crustose coralline algae were recorded forming rhodoliths. Despite some initiatives, the richness of fauna associated with rhodoliths in SW Atlantic is still poorly known. Specific microbiome described associated with rhodoliths indicates important role in biomineralization process. The environmental services provided by the recently described rhodolith beds (Abrolhos Banks and Vitoria Trindade Seamounts) as calcium carbonate production, increase habitat complexity, benthic diversity and associated fish assemblages justify urgent actions to protect these ecosystems.


Continental Shelf Remotely Operate Vehicle Brazilian Coast Sidescan Sonar Marine Protect Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Althaus F, Williams A, Schlacher TA, Kloser RJ, Green MA, Barker BA, Bax NJ, Brodie P, Schlacher-Hoenlinger MA (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Progr Ser 397:279–294CrossRefGoogle Scholar
  2. Amado-Filho GM, Pereira Filho GH (2012) Rhodolith beds in Brazil: a new potential habitat for marine bioprospection. Rev Bras Farmacogn 22:782–788CrossRefGoogle Scholar
  3. Amado-Filho GM, Maneveldt G, Manso RCC, Marins Rosa BV, Pacheco MR, Guimarães SMPB (2007) Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil. Cienc Mar 33:399–410Google Scholar
  4. Amado-Filho GM, Maneveldt GW, Pereira-Filho GH, Manso RCC, Bahia RG, Barros-Barreto MB, Guimarães SMPB (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cienc Mar 36:371–391CrossRefGoogle Scholar
  5. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012a) Rhodolith beds are major CaCO3 bio-factories in the tropical south west atlantic. Plos One 7:e35171CrossRefGoogle Scholar
  6. Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012b) Occurrence and distribution of rhodolith beds on the Fernando de Noronha Archipelago of Brazil. Aquat Bot 101:41–45CrossRefGoogle Scholar
  7. Amado-Filho GM, Moura RL, Bastos AC, Frnacini-Filho RB, Pereira-Filho GH, Bahia RG, Moraes FC, Motta FS (2016) Mesophotic cosystems of the unique South Atlantic atoll are composed by rhodolith beds and scattered consolidated reefs. Mar Biodivers 46:407–420CrossRefGoogle Scholar
  8. Ávila E, Riosmena-Rodríguez R (2010) Rhodoliths beds as critical habitats for monitoring in marine protected areas in the Gulf of California. In: Polisciano G, Farina O (eds) National parks, vegetation, wildlife and threats. Nova Science Publishers, New York, pp 207–214Google Scholar
  9. Bahia, RG (2014) Algas calcárias formadoras de rodolitos da plataforma continental tropical e ilhas oceânicas do Brasil: inventário florístico e taxonomia. PhD thesis, Escola Nacional de Botânica Tropical, Rio de Janeiro, 221 ppGoogle Scholar
  10. Bahia RG, Abrantes DP, Brasileiro PS, Pereira-Filho GH, Amado Filho GM (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Braz J Oceanogr 58:323–337CrossRefGoogle Scholar
  11. Bahia RG, Riosmena-Rodríguez R, Maneveldt GW, Amado Filho GM (2011) First report of Sporolithon ptychoides(Sporolithales, Corallinophycidae, Rhodophyta) for the Atlantic Ocean. Phycol Res 59:64–69Google Scholar
  12. Bahia RG, Amado Filho GM, Maneveldt GW (2014a) Sporolithon molle(Heydrich) Heydrich (Sporolithales, Corallinophycidae, Rhodophyta): an addition to the Atlantic flora found on a remote oceanic island. Cryptogam Algol 35:7–14Google Scholar
  13. Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WH, Johnson G, Marins BV, Longo LL (2014b) Sporolithon tenuesp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): a new rhodolith-forming species from the tropical southwestern Atlantic. Phycol Res 62:44–54Google Scholar
  14. Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WH, Johnson G, Jesionek MB, Longo LL (2015) Sporolithon yoneshigueaesp. nov. (Sporolithales, Corallinophycidae, Rhodophyta), a new rhodolith-forming coralline alga from the southwest Atlantic. Phytotaxa 224:140–158Google Scholar
  15. Bastos AC, Moura RL, Amado Filho GM, Dagostini DP, Secchin NA, Francini-Filho RB, Guth AZ, Sumida PY, Mahiques M, Thompson FL (2013) Buracas: novel and unusual sinkhole-like features in the Abrolhos Bank. Cont Shelf Res 70:118–125CrossRefGoogle Scholar
  16. Berlandi RM, Figueiredo MAO, Paiva PC (2012) Rhodolith morphology and the diversity of polychaetes off the southeastern Brazilian coast. J Coast Res 28:280–287CrossRefGoogle Scholar
  17. Boero F (2010) The study of species in the era of biodiversity: a tale of stupidity. Diversity 2:115–126CrossRefGoogle Scholar
  18. Bouzon JL, Freire AS (2007) The Brachyura and Anomura fauna (Decapoda; Crustacea) in the Arvoredo Marine Biological Reserve on the Southern Brazilian Coast. Braz J Biol 7:321–325CrossRefGoogle Scholar
  19. Brasileiro PS, Pereira-Filho GH, Bahia RG, Abrantes DP, Guimarães SMPB, Moura RL, Francini-Filho RB, Bastos AC, Amado Filho GM (2016) Macroalgal composition and community structure of the largest rhodolith beds in the world. Mar Biodivers 46:407–420CrossRefGoogle Scholar
  20. Broom JES, Hart DR, Farr TJ, Nelson WA, Neill KF, Harvey AS, Woelkerling WMJ (2008) Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Mol Phylogenet Evol 46:958–973CrossRefGoogle Scholar
  21. Cavalcanti, VMM (2011) Plataforma continental : a última fronteira da mineração brasileira. Report DNPM, Brasilia 104 pGoogle Scholar
  22. Cavalcanti GS, Gregoraci GB, Santos EO, Silveira CB, Meirelles PM, Longo L, Gotoh K, Naramura S, Iida T, Sawabe T, Rezende CE, Francini-Filho RB, Moura RL, Amado Filho GM, Thompson FL (2014) Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean. ISME J 8:52–62CrossRefGoogle Scholar
  23. CBD (2010) COP 10 – Tenth ordinary meeting of the Conference of the Parties to the Convention on Biological Diversity, COP 10. Strategic plan for biodiversity 2011–2020. United Nations Environment Programme. Nagoya, JapanGoogle Scholar
  24. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M, Stocks KI, Rogers AD, O’Hara TD, White M, Shank TM, Hall-Spencer JM (2010) Effects of fishing on the benthic biodiversity of seamounts of the “Graveyard” complex, northern Chatham Rise. Ann Rev Mar Sci 2:253–278CrossRefGoogle Scholar
  25. Consalvey M, Clark MR, Rowden AA, Stocks KI (2010) Life on seamounts. In: McIntyre A (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, New YorkGoogle Scholar
  26. Dias GTM (2000) Granulados Bioclásticos – Algas Calcárias. Braz J Geophys 18:307–318Google Scholar
  27. Dias GTM, Villaça RC (2012) Coralline algae depositional environments on the Brazilian Central–South-Eastern shelf. J Coast Res 28:270–279CrossRefGoogle Scholar
  28. Dominguez JML, Silva RP, Nunes AS, Freire AFM (2013) The narrow, shallow, low-accommodation shelf of central Brazil: sedimentology, evolution, and human uses. Geomorphology 203:46–59CrossRefGoogle Scholar
  29. Figueiredo MAO, Menezes KS, Paiva EMC, Paiva PC, Ventura CRR (2007) Evaluación experimental de rodolitos como sustratos vivos para la infauna en el Banco de Abrolhos, Brasil. Cien Mar 33:427–440Google Scholar
  30. Figueiredo MAO, Coutinho R, Villas-Boas AB, Tâmega FTS, Mariath R (2012) Deep-water rhodolith productivity and growth in the southwestern Atlantic. J Appl Phycol 24:487–493CrossRefGoogle Scholar
  31. Foster M (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  32. Foster MS, Amado Filho GM, Kamenos NA, Riosmena-Rodríguez R, Steller DS (2013) Rhodolith and rhodolith beds. In: Lang M (ed) Contribution of SCUBA diving to research and discovery in marine environments, vol 39. Smithsonian Institution Scholarly Press, Washington, DC, pp 143–156Google Scholar
  33. Freitas MO, Moura RL, Francini-Filho RB, Minte-Vera CV (2011) Spawning patterns of commercially important reef fish (Lutjanidae and Serranidae) in the tropical western South Atlantic. Sci Mar 75:135–146CrossRefGoogle Scholar
  34. Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot Mar 55:85–99Google Scholar
  35. Gherardi DFM (2004) Community structure and carbonate production of a temperate rhodolith bank from Arvoredo Island, southern Brazil. Braz J Oceanogr 52:207–224Google Scholar
  36. Giustina IDD (2006) Sedimentação carbonática de algas vermelhas coralináceas da plataforma continental da bacia de Campos: um modelo carbonático análogo para o terciário. Master dissertation, Geosciences, Federal University of Rio Grande do Sul, 134 ppGoogle Scholar
  37. Guimarães SMPB (2003) Uma análise da diversidade da flora marinha bentônica do Estado do Espírito Santo, Brasil. Hoehnea 30:11–19Google Scholar
  38. Guimarães SMPB, Amado-Filho GM (2009) First record of Reticulocaulis mucosissimusI. A. Abbott (Naccariaceae, Rhodophyta) for the western Atlantic Ocean. Rev Bras Bot 32:671–675Google Scholar
  39. Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc Mar 33:411–426Google Scholar
  40. Harvey AS, Bird FL (2008) Community structure of a rhodolith bed from coldtemperate waters (southern Australia). Aust J Bot 56:437–450CrossRefGoogle Scholar
  41. Henriques MC, Villas-Boas AB, Riosmena-Rodríguez R, Figueiredo MAO (2012) New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water in Espírito Santo State, Brazil. Helgol Mar Res 66:219–231CrossRefGoogle Scholar
  42. Henriques MC, Coutinho LM, Riosmena-Rodríguez R, Barros-Barreto MB, Khader S, Figueiredo MAO (2014a) Three deep water species of Sporolithon (Sporolithales, Rhodophyta) from the Brazilian continental shelf, with the description of Sporolithon elevatum sp. nov. Phytotaxa 190:320–330CrossRefGoogle Scholar
  43. Henriques MC, Riosmena-Rodríguez R, Coutinho LM, Figueiredo MAO (2014b) Lithophylloideae and Mastophoroideae (Corallinales, Rhodophyta) from the Brazilian continental shelf. Phytotaxa 190:112–129CrossRefGoogle Scholar
  44. Kempf M (1970) Notes on the benthic bionomy of the N-NE Brazilian shelf. Mar Biol 5:213–224CrossRefGoogle Scholar
  45. Kirkpatrick JB (1983) An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biol Conserv 25:127–134CrossRefGoogle Scholar
  46. Konar B, Riosmena-Rodríguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49:355–359CrossRefGoogle Scholar
  47. Lavrado HP (2006) Caracterização do ambiente e da comunidade bentônica. In Lavrado HP, Ignácio BL (eds) Bidiversidade da costa central da zona econômica exclusiva brasileira. Museu Nacional Rio de JaneiroGoogle Scholar
  48. Mabesoone JM, Kempf M, Coutinho PN (1972) Characterization of surface sediments on the northern and eastern Brazilian shelf. Trab Oceanogr Univ Fed Pe 13:41–48Google Scholar
  49. Metri R (2006) Ecologia de um banco de algas calcárias da Reserva Biológica Marinha do Arvoredo, SC, Brasil. Master dissertation, Zoology, Federal Universisty of Paraná, 125 ppGoogle Scholar
  50. Milliman JD (1977) Role of calcareous algae in Atlantic continental margin sedimentation. In: Fluguel E (ed) Fossil algae. Springer-Verlag, BerlinGoogle Scholar
  51. Milliman JD, Amaral CAB (1974) Economic potential of Brazilian continental margin sediments. An Congr Brasil Geo 28:335–344Google Scholar
  52. Moura RL (2002) Brazilian reefs as priority areas for biodiversity conservation in the Atlantic Ocean. Proc Int Coral Reef Symp 9:917–920Google Scholar
  53. Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Güth AZ, Lopes RM, Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117CrossRefGoogle Scholar
  54. Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252CrossRefGoogle Scholar
  55. Nelson WA (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801CrossRefGoogle Scholar
  56. Nelson W, Neill K, Farr T, Barr N, D’Archino R, Miller S, Stewart R (2012) Rhodolith beds in Northern New Zealand: characterisation of associated biodiversity and vulnerability to environmental stressors. New Zealand Aquatic Environment and Biodiversity Report No. 99Google Scholar
  57. Pascelli C, Riul P, Riosmena-Rodríguez R, Schernera F, Nunes M, Hall-Spencer JM, Oliveira EC, Horta PA (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65CrossRefGoogle Scholar
  58. Peña V, Bárbara I (2008) Maërl community in the northwestern Iberian Peninsula: a review of floristic studies and long-term changes. Aquat Conserv Mar Freshwat Ecosyst 18:339–366CrossRefGoogle Scholar
  59. Peña V, Adey WH, Riosmena-Rodríguez R, Jung MY, Afonso-Carrillo J, Choi HG, Bárbara I (2011) Mesophyllum sphaericumsp. nov. (Corallinales, Rhodophyta): a new maerl-forming species from the Northeast Atlantic. J Phycol 47:911–927Google Scholar
  60. Pereira-Filho GH, Amado-Filho GM, Guimarães SMPB, Moura RL, Sumida PY, Abrantes DP, Bahia RG, Güth AZ, Jorge RR, Francini-Filho RB (2011) Reef fish and benthic assamblages of the Trindade and Martin Vaz Island Group, Southwestern Atlantic. Braz J Oceanogr 59:201–212Google Scholar
  61. Pereira-Filho GH, Amado-Filho GM, Moura RL, Bastos AC, Guimarães SMPB, Salgado LT, Francini-Filho RB, Bahia RG, Abrantes DP, Guth AZ, Brasileiro OS (2012) Extensive Rhodolith beds cover the summits of southwestern atlantic ocean seamounts. J Coast Res 28:261–269CrossRefGoogle Scholar
  62. Pereira-Filho GH, Francini-Filho RB, Pierozzi I Jr, Pinheiro HT, Bastos AC, Moura RL, Moraes FC, Matheus Z, Bahia RG, Amado-Filho GM (2014) Sponges and fish facilitate succession from rhodolith beds to reefs. Bull Mar Sci 91:45–46CrossRefGoogle Scholar
  63. Pereira-Filho GH, Veras PDC, Francini-Filho RB, Moura RL, Pinheiro HT, Gibran FZ, Matheus Z, Neves LM, Amado-Filho GM (2015) Effects of the sand tilefish Malacanthus plumierion the structure and dynamics of a rhodolith bed in the Fernando de Noronha Archipelago, tropical West Atlantic. Mar Ecol Prog Ser 541:65–73Google Scholar
  64. Pinheiro HT, Gasparini JL, Joyeux JC (2010) Reef fish mass mortality event in an isolated island off Brazil, with notes on recent similar events at Ascension, St Helena and Maldives. Mar Biodivers Rec 3:e47CrossRefGoogle Scholar
  65. Riul (2007) Aspectos da Biologia e Ecologia de rodolitos e comunidade associada na grande João Pessoa, PB. Master dissertation, Zoology, Federal University of Paraiba, BrazilGoogle Scholar
  66. Riul P, Targino CH, Farias JN, Visscher PT, Horta PA (2008) Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J Mar Biol Ass UK 88:17–19CrossRefGoogle Scholar
  67. Riul P, Lacouth P, Pagliosa PR, Christoffersen ML, Horta PA (2009) Rhodolith beds at the easternmost extreme of South America: community structure of an endangered environment. Aquat Bot 90:315–320CrossRefGoogle Scholar
  68. Rocha RM, Moreno TT, Metri R (2005) Ascídias (Tunicata, Ascidiacea) da Reserva Biológica Marinha do Arvoredo, Santa Catarina Brasil. Rev Bras Zoologia 22:461–476CrossRefGoogle Scholar
  69. Sissini MN, Oliveira MC, Gabrielson PW, Robinson NM, Okolodkov YB, Riosmena-Rodríguez R, Horta PA (2014) Mesophyllum erubescens(Corallinales, Rhodophyta) – so many species in one epithet. Phytotaxa 190:299–319Google Scholar
  70. Skolotnev SG, Peyve AA, Turko NN (2010) New data on the structure of the Vitória-Trindade Seamount Chain, Western Brazil Basin, South Atlantic. Dokl Earth Sci 431:435–440CrossRefGoogle Scholar
  71. Tamega FTS, Oliveira OS, Figueiredo MAO (2013) Catalogue of the benthic marine life from Peregrino Oil Field, Campos Basin, Brazil. Report Instituto Biodiversidade Marinha, Rio de JaneiroGoogle Scholar
  72. Testa V (1997) Calcareous algae and corals in the inner shelf of Rio Grande do Norte, NE Brazil. Proc 8th Int Coral Reef Symp 1:737–742Google Scholar
  73. Testa V, Bosence DWJ (1999) Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46:279–301CrossRefGoogle Scholar
  74. Vicalvi MA, Milliman JD (1977) Calcium carbonate sedimentation on continental shelf off southern Brazil with special reference to benthic foraminifera. In: Frost SH, Weiss MP, Saunders JB (eds) Studies in geology, 4, AAPGoogle Scholar
  75. Villas-Boas AB, Riosmena-Rodríguez R, Amado Filho GM, Maneveldt GW, Figueiredo MAO (2009) Taxonomy of rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil. Phycologia 48:237–248CrossRefGoogle Scholar
  76. Villas-Boas AB, Riosmena-Rodríguez R, Figueiredo MAO (2014) Community structure of rhodolith-forming beds on the central Brazilian continental shelf. Helg Mar Res 68:27–35Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Gilberto M. Amado-Filho
    • 1
  • Ricardo G. Bahia
    • 1
  • Guilherme H. Pereira-Filho
    • 2
  • Leila L. Longo
    • 3
  1. 1.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Universidade Federal de São PauloSantosBrazil
  3. 3.Universidade Federal do Espírito SantoVitóriaBrazil

Personalised recommendations