Skip to main content

Bubble Rise in the Gravity Field

  • Chapter
  • First Online:
Bubble Systems

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

Methods of similarity theory are employed to analyze the general features of emersion of vapour bubbles in a bulk of still liquid. A set of similarity criteria is obtained governing the process under study. An analysis of experimental data on emersion is carried out. Three typical cases are singled out: rise of spherical bubbles, rise of ellipsoidal bubbles, and rise of bubbles in the form of spherical caps. For each of these cases, we perform an analysis by the methods of similarity theory; give the results of analytical solutions and the available semiempirical formulas. It is shown that in many instances, a sequential application of the methods of similarity theory is capable of delivering a solution of the problem under study up to a universal dimensionless constant. The cases of rise of solid spherical particles and gas spheres in the field of gravity force are considered. The effect of surfactant impurities on emersion of bubbles is analyzed. General design formulas are obtained capable of describing the motion of both solid and gas spheres over the entire possible range of Reynolds numbers, both in the presence and in the absence of surfactant impurities. An explanation is given of the absence of the effect of surfactants on the rise velocity of large bubbles. A detailed clarification is given of the mechanism of the formation of bubbles in the form of spherical caps, as well as of the mechanisms governing their ascent motion. From the above analysis, a general formula is derived describing the rise velocity of gaseous (vapour) bubbles. This formula takes into account the effect of all parameters governing the gravitational ascent of bubbles, encompasses the entire possible range of variation of similarity numbers, and justifies the required passages to the limit. The formula can be used both for pure liquids and in the presence of surfactant impurities. An influence of congregate effects on the emersion of bubbles is analyzed. It is shown that during intensive bubbling the ascent rate of vapour (gas) phase can differ by many times from rise velocity of single bubbles. A detailed analysis is given of the physical mechanisms of this phenomenon and principal approaches to the problem of bubbling hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Weber number increases with Reynolds numbers (the enlargement of a bubble). When \(We \approx 1\) is reached, bubbles lose the spherical form. Hence in practice the values \(\text{Re} \approx 400 {-} 600\) are maximum attainable values.

  2. 2.

    Unfortunately, this paper contains methodological errors relating to the calculation of the velocity of liquid from the measured pressure difference in the cross streaming of a sensor tube (Avdeev and Halme 1991), see also (Hills 1983). A correct processing of Hills’s data was presented in Avdeev et al. (1991).

References

  • Abou-El-Hassan, M.E.: A generalized bubble rise velocity correlation. Chem. Eng. Comm. 22, 243–250 (1983)

    Article  Google Scholar 

  • Avdeev, A.A.: Hydrodynamics of bubbling. Therm. Eng. 11, 42–46 (1983)

    Google Scholar 

  • Avdeev, A.A.: Vapour holdup while bubbling. Therm. Eng. 11, 43–46 (1984)

    Google Scholar 

  • Avdeev, A.A.: Interpolation formulas for calculation of drag coefficient of a circular cylinder and a sphere. Therm. Eng. 12, 72 (1988)

    Google Scholar 

  • Avdeev, A.A.: General relation for calculating the speed of bubble gravity ascent. Therm. Eng. 7, 16–19 (1989)

    Google Scholar 

  • Avdeev, A.A., Halme, N.S.: Analysis of methods for measuring velocity fields in the bubble flows. Therm. Eng. 5, 47–51 (1991)

    Google Scholar 

  • Avdeev, A.A., Drobkov, V.P., Halme, N.S.: Turbulent transfer of momentum in a bubble layer. High Temp. 20 (4), 775–780 (1991)

    Google Scholar 

  • Bailey, R. V., Zmola, P.C., Taylor, F.M., et al.: Transport of Gases through Liquid-gas Mixtures (No. CF-55-12-118). Oak Ridge National Lab. Rep. (1955)

    Google Scholar 

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  • Birkhoff, G., Zarantonello, E.H.: Jets, Wakes and Cavities. Academic Press, New York (1957)

    MATH  Google Scholar 

  • Bove, S., Solberg, T., Hjertager, B.H.: Numerical aspects of bubble column simulations. Int. J. Chem. Reactor Eng. 2(A1), 1–22 (2004)

    Google Scholar 

  • Brabston, D.C.: Numerical solutions of steady viscous flow past spheres and gas bubbles. Ph. D. Thesis, California Institute of Technion (1974)

    Google Scholar 

  • Brabston, D.C., Keller, H.B.: Viscous flows past spherical gas bubbles. J. Fluid Mech. 69(1), 179–189 (1975)

    Article  MATH  Google Scholar 

  • Burns, L.F., Rice, R.G.: Circulation in bubble columns. AIChE J. 43(6), 1390–1402 (1997)

    Article  Google Scholar 

  • Chen, R.C., Reese, J., Fan, L.S.: Flow structure in a three-dimensional bubble column and three-phase fluidized bed. AIChE J. 40, 1093–1104 (1994)

    Article  Google Scholar 

  • Clark, N.N., Atkinson, C.M., Flemmer, R.I.C.: Turbulent circulation in bubble columns. AIChE J. 33(3), 515–518 (1987)

    Article  Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Stability of bubbles in fluidized bed. Ind. Eng. Chem. Fundam. 13(1), 45–51 (1974)

    Article  Google Scholar 

  • Davis, R.M., Taylor, G.I.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Ser. A 200, 375–390 (1950)

    Google Scholar 

  • Deen, N.G., Solberg, T., Hjertager, B.H.: Large eddy simulation of gas-liquid flow in a square cross-sectioned bubble column. Chem. Eng. Sci. 56, 6341–6349 (2001)

    Article  Google Scholar 

  • Devanathan, N., Dudukovich, M.P., Lapin, A., et al.: Chaotic flow in bubble column reactors. Chem. Eng. Sci. 50(16), 2661–2667 (1995)

    Article  Google Scholar 

  • Frank-Kamenetskiy, D.A.: On the motion of bubbles and drops. Tr. NII-1 (Proc. of Scientific Institute No.1), 7, 1–17 (1946) (In Russian)

    Google Scholar 

  • Goldstein, S.: The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc. of the Royal Soc. of London A: Mathematical, Physical and Engineering Sciences. 123(791), 225–235 (1929)

    Google Scholar 

  • Haberman, L.H., Morton, R.K.: An experimental study of bubbles moving in liquids. Trans. Amer. Soc. Civil Eng. 121, 227–241 (1956)

    Google Scholar 

  • Hadamard, J.S.: Mouvement permanent tent d’une sphere liquid et visquese dans un liquid visqueux. C. R. Acad. Sci. 152, 1735–1738 (1911)

    MATH  Google Scholar 

  • Harper, J.F.: Motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59–129 (1972)

    Article  MATH  Google Scholar 

  • Hills, J.H.: Radial non-uniformity of velocity and voidage in bubble column. Trans. Inst. Chem. Eng. 52, 1–9 (1974)

    Google Scholar 

  • Hills, J.H.: Investigation into the suitability of a transverse Pitot tube for two phase flow measurements. Chem. Eng. Res. Des. 61(6), 371–376 (1983)

    Google Scholar 

  • Joshi, J.B.: Computational flow modeling and design of bubble column reactors. Chem. Eng. Sci. 56, 5893–5933 (2001)

    Article  Google Scholar 

  • Kapitza, P.L.: Wave motion of thin viscous layers of liquid—I. J. Exp. Theor. Phys. (USSR) 18(1), 2–28 (1948)

    Google Scholar 

  • Karamanev, D.G.: Rise of gas bubbles in quiescent liquids. AIChE J. 40(8), 1418–1421 (1994)

    Article  Google Scholar 

  • Kulkarni, A.A., Joshi, J.B.: Bubble formation and bubble rise velocity in gas-liquid systems: a review. Ind. Eng. Chem. Res. 44, 5873–5931 (2005)

    Article  Google Scholar 

  • Kumar, S.B., Moslemian, D., Dudukovic, M.P.: A gamma-ray tomographic scanner for imaging voidage distribution in two-phase systems. Flow Meas. Instrum. 6(1), 61–73 (1995)

    Article  Google Scholar 

  • Laborde-Boutet, C., Larachi, F., Dromard, N., et al.: CFD simulation of bubble column flows: investigation on turbulence models in RANS approach. Chem. Eng. Sci. 64, 4399–4413 (2009)

    Article  Google Scholar 

  • Labuntsov, D.A., Yagov, V.V.: Mechanics of Simple Gas-Liquid Structures. Izd. MEI (Moscow Power Energetic Univ. Publ.), Moscow (1978) (In Russian)

    Google Scholar 

  • Labuntsov, D.A., Zaharova, E.P., Kornyuhin, I.P.: Void fraction of two-phase adiabatic flow in vertical channels. Therm. Eng. 4, 62–67 (1968)

    Google Scholar 

  • Labuntsov, D.A., Zudin, Y.B.: Speed of gravitational ascent and form of large bubbles. Tr. MEI (Proc. Moscow Power Energetic Inst.). 268, 72–79 (1975) (In Russian)

    Google Scholar 

  • Lehrer, H.G.: A rational terminal velocity equation for bubbles and drops at intermediate and high Reynolds number. J. Chem. Eng. Jpn. 9(3), 237–240 (1976)

    Article  Google Scholar 

  • Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  • Levy, S.: Prediction of two-phase pressure drop and density distribution from mixing length theory. J. Heat Transf. 85(2), 137–150 (1963)

    Article  Google Scholar 

  • Lojtsyanskij, L.G.: Mechanics of Fluid and Gas. Nauka, Moscow (1987). (In Russian)

    MATH  Google Scholar 

  • Marangoni C.: Sull’espansione delle goccie d’un liquido galleggianti sulla superfice di altro liquido (1865)

    Google Scholar 

  • Mendelson, H.D.: The prediction of bubble terminal velocities from wave theory. AIChE J. 13(2), 250–253 (1967)

    Article  Google Scholar 

  • Menzel, T., Weide, T., Staudacher, O., et al.: Reynolds shear stress modeling of bubble column reactors. Ind. Eng. Chem. Res. 29(6), 988–994 (1990)

    Article  Google Scholar 

  • Moor, D.W.: The boundary layer on spherical gas bubble. J. Fluid Mech. 16(7), 161–176 (1963)

    Article  MathSciNet  Google Scholar 

  • Moor, D.W.: The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23(4), 749–766 (1965)

    Article  Google Scholar 

  • Mudde, R.F., Groen, J.S., Van Den Akker, H.E.A.: Liquid velocity field in a bubble column: LDA experiments. Chem. Eng. Sci. 52(21/22), 4217–4224 (1997)

    Article  Google Scholar 

  • Ojima, S., Hayashi, K., Hosokawa, S., et al.: Distribution of void fraction and liquid velocity in air-water bubble column. Int. J. Multiph. Flow 67, 111–121 (2014)

    Article  Google Scholar 

  • Pavlov, V.P.: The circulation of the liquid in the bubbling batch apparatus. Khimicheskaya Promyshlennost’ (Chemical Industry) 9, 58–60 (1965). (In Russian)

    Google Scholar 

  • Peebles, F.N., Garber, H.J.: Studies on the motion of gas bubbles in liquids. Chem. Eng. Prog. 49(2), 88–97 (1953)

    Google Scholar 

  • Rafique, M., Chen, P., Dudukovici, M.P.: CFD simulation of bubble column: an explicit algebraic Reynolds stress model approach. Rev. Chem. Eng. 20, 225–375 (2004)

    Article  Google Scholar 

  • Rodrigue, D.: A general correlation for the rise velocity of a single gas bubbles. Can. J. Chem. Eng. 82, 382–386 (2004)

    Article  Google Scholar 

  • Rodrigue, D., De Kee, D., Chan Man Fong, C.F.: An experimental study of the effect of surfactants on the free rise velocity of gas bubbles. J. Non-Newt. Fluid Mech. 66(2–3), 213 (1996)

    Google Scholar 

  • Rybczynski, W.: On the translator motion of fluid sphere in viscous medium. Bull. Int. Acad. Pol. Sci. Lett. Cracovie. Ser. A. 40, 40–46 (1911)

    Google Scholar 

  • Schlihting, H.: Boundary Layer Theory. McGraw-Hill, New York (1968)

    Google Scholar 

  • Sokolichin, A., Eigenberger, G.: Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 24–45 (2004)

    Article  Google Scholar 

  • Stokes, G. G.: On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Pitt Press, Pittsburgh (1851)

    Google Scholar 

  • Towell, G.D., Strand, C.P., Ackerman, G.H.: Mixing and Mass Transfer in Large Diameter Bubble Columns. Mixing: Theory Related to Practice. London (1965)

    Google Scholar 

  • Wegner, P.P., Parlange, J.-Y.: Spherical-cap bubbles. Ann. Rev. Fluid Mech. Univ. Conn. 5, 79–100 (1973)

    Google Scholar 

  • Wu, B.J., Deluca, R.T., Wegener, P.P.: Rise speed of spherical cap bubbles at intermediate Reynolds number. Chem. Eng. Sci. 29, 1307–1309 (1974)

    Article  Google Scholar 

  • Xing, C., Wang, T., Wang, J.: Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chem. Eng. Sci. 95, 313–322 (2013)

    Article  Google Scholar 

  • Zhang, D., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem. Eng. Sci. 61, 7593–7608 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Avdeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avdeev, A.A. (2016). Bubble Rise in the Gravity Field. In: Bubble Systems. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29288-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29288-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29286-1

  • Online ISBN: 978-3-319-29288-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics