Skip to main content

Thermally Controlled Bubble Growth

  • Chapter
  • First Online:
  • 1355 Accesses

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

The mathematical formulation of the heat input governed vapor bubble growth in a bulk of uniformly heated liquid is presented. Using the theory of dimensions, the structure of the solution was analyzed qualitatively. A historical survey of theoretical works devoted to the considered problem is presented. The set of degenerate solutions of the problem is obtained and studied systematically. The complete analytical solution of the problem is obtained for the first time. Formulas for the calculation of the bubble growth rate in the whole domain of possible variations in regime parameters are presented. The conclusion is made that the influence of permeability of the interface has a significant effect on the bubble growth rate. It is shown that the Plesset–Zwick formula, which is commonly accepted in computational practice, is not applicable at both small and large Jakob numbers and its good agreement with the experiment is determined to a large extent by a combination of the imperfectness of the theoretical analysis and the experimental error. The conclusion is made that, for many liquids, the ultimately achievable value of the dimensionless superheating parameter (Stefan number) can exceed unity. In this case, the regularities in the bubble growth acquire some features unexplored to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The left branch of the function for the case of condensation \(({\text{S}} < 0)\) is shown on Fig. 1.9.

  2. 2.

    The mathematical part of this investigation was presented in the earlier paper Plesset and Zwick (1952), as well as in the report Zwick (1954).

  3. 3.

    Their arguments were based on the analysis presented in the classical book by Sedov (1993), the first Russian edition of this book dates back to 1944.

  4. 4.

    The difference between the ‘planar’ and ‘spherical’ problems will be manifested only after expanding the parameter С.

  5. 5.

    Calculations by ‘the mean enthalpy’ heat capacity of a liquid, \(\left\langle {c_{pl} } \right\rangle = {{\left( {h_{ * } - h_{s} } \right)} \mathord{\left/ {\vphantom {{\left( {h_{ * } - h_{s} } \right)} {\left( {T_{ * } - T_{s} } \right)}}} \right. \kern-0pt} {\left( {T_{ * } - T_{s} } \right)}}\), gives the value of the Stefan number smaller by approximately 10 %.

  6. 6.

    In his original paper, Labuntsov (1974) proposed the fourth asymptotical bubble growth rate assuming the governing role of molecular-kinetic effects relating to evaporation of liquid from superheated interfacial boundary. This approach is valid in the case of highly intensive evaporation processes, when the velocity of motion of resultant vapour is commensurable with the sound velocity.

  7. 7.

    We recall that formula (4.105) is, strictly speaking, an asymptotical law of bubble dynamical growth, which does not apply at early growth stages (see Sect. 2.4).

References

  • Avdeev, A.A.: Laws of the growth, condensation, and dissolution of vapor and gas bubbles in turbulent flows. High Temp. 26, 290–297 (1988)

    Google Scholar 

  • Avdeev, A.A.: Dynamics of vapor nucleus in a superheated liquid (regularities of initial period of growth). High Temp. 53(4), 538–547 (2015)

    Article  Google Scholar 

  • Avdeev, A.A., Zudin, YuB: Thermal energy scheme of vapor bubble growth (universal approximate solution). High Temp. 40(2), 264–271 (2002)

    Article  Google Scholar 

  • Avdeev, A.A., Zudin, YuB: Inertial-thermal govern vapor bubble growth in highly superheated liquid. Heat Mass Transf. 41, 855–863 (2005)

    Article  Google Scholar 

  • Birkhoff, G., Margulis, R., Horning, W.: Spherical bubble growth. Phys. Fluids 1, 201–204 (1958)

    Article  MathSciNet  Google Scholar 

  • Bosnjakovic, F.: Verdampfung und Flüssigkeitsüberhitzung. Technische Mechanik und Thermodynamik. 10, 267–280 (1930)

    Google Scholar 

  • Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  • Dalle Donne M., Ferranti, M.P.: The growth of vapor bubbles in superheated sodium. Int. J. Heat Mass Transfer. 18, 477–493 (1975)

    Google Scholar 

  • Dergarabedian, P.: The rate of growth of vapor bubbles in superheated water. J. Appl. Mech. 20(4), 537–545 (1953)

    Google Scholar 

  • Forster, H.K., Zuber, N.: Growth of a vapor bubble in a superheated liquids. J. Appl. Phys. 25(4), 474–478 (1954)

    Article  MATH  Google Scholar 

  • Fritz, W., Ende, W.: Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Berechnung des Maximalvolumens von Dampfblase. Phys. Zeitschrift. 37, 391–401(1936)

    Google Scholar 

  • Jakob, M., Linke, W.: Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen. Phys. Zeitschrift. 36, 391–401 (1935)

    Google Scholar 

  • Labuntsov, D.A.: Modern vies on the mechanism of nucleate boiling of liquids. In: Heat Transfer and Physical Hydrodynamics, pp. 98–115. Izd. AN SSSR (Academy of Sci. of USSR Publ.) (1974) (In Russian)

    Google Scholar 

  • Labuntsov, D.A., Yagov, V.V.: Mechanics of Simple Gas-liquid Structures. MEI (Moscow Power Energetic Univ. Publ.), Moscow (1978) (In Russian)

    Google Scholar 

  • Lamé, G., Clapeyron, B.P.: Memoire sur la Solidification par Refroidissiment d’un Globe Liquide. Ann. Chem. Phys. 47, 250–256 (1831)

    Google Scholar 

  • Lee, H.S., Merte, H.: Spherical vapour bubble growth in uniformly superheated liquids. Int. J. Heat Mass Transfer. 39, 2427–2447 (1996)

    Article  MATH  Google Scholar 

  • Mikic, B.B., Rosenow, W.M., Griffith, P.: On bubble growth rates. Int. J. Heat and Mass Transf. 13(4), 657–666 (1970)

    Article  Google Scholar 

  • Lesage, F., Judd, R.L., Robinson, A.J.: Numerical method for spherical bubble growth in superheated liquids. Comput. Therm. Sci. 2(1), 19–31 (2010)

    Article  Google Scholar 

  • Picker, G.: Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation. Technische Universität München (1998)

    Google Scholar 

  • Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  MATH  Google Scholar 

  • Plesset, M.S., Zwick, S.A.: A nonsteady heat diffusion problem with spherical symmetry. J. Appl. Phys. 23(1), 95–98 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Plesset, M.S., Zwick, S.A.: The growth of vapor bubbles in superheated liquids. J. Appl. Phys. 25(4), 493–500 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, A., Judd, R.L.: The dynamics of spherical bubble growth. Int. J Heat Mass Transf. 47(23), 5101–5113 (2004)

    Article  MATH  Google Scholar 

  • Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. CRC Press, Boca Raton (1993)

    Google Scholar 

  • Scriven, L.E.: On the dynamics of phase growth. Chem. Eng. Sci. 10(1/2), 1–14 (1959)

    Article  Google Scholar 

  • Shepherd, J.E., Sturtevant, B.: Rapid evaporation at the superheat limit. J. Fluid Mech. 121, 379-402 (1982)

    Google Scholar 

  • Skripov, V.P.: Metastable Liquid. Wiley, New York (1974)

    Google Scholar 

  • Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung imPolarmeere. Sitzungsberichte der Math.-Naturw. Classe der Kaiserlichen Akad. derWissen. Wien, Band XCVIII, Nr. IIa (1890)

    Google Scholar 

  • Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. 278(2), 269–286 (1891)

    Article  MATH  Google Scholar 

  • Theofanous, T.G., Patel, P.D.: Universal relations for bubble growth. Int. J. Heat Muss Transf. 19(4), 425–429 (1976)

    Article  Google Scholar 

  • Theofanous, T.G., Bohrer, T.G., Chang, M.C., et al.: Experiments and universal growth relations for vapor bubbles with microlayers. J. Heat Transf. 100(1), 41–48 (1978)

    Article  Google Scholar 

  • Zwick, S.A.: The growth and collapse of vapor bubbles. Hydrodynamic Laboratory Report No. 21–19, Nov 1954. 103 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Avdeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avdeev, A.A. (2016). Thermally Controlled Bubble Growth. In: Bubble Systems. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29288-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29288-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29286-1

  • Online ISBN: 978-3-319-29288-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics