Skip to main content

Giant Magnetoimpedance Sensors and Their Applications

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Since GMI changes as a function of external dc magnetic field or applied dc/ac current, it is possible to design and produce GMI-based sensors that can measure either magnetic fields or dc/ac currents. GMI also changes sensitively with applied stress, and this provides a new opportunity to develop stress sensors. A brief description of these typical sensors is given in this chapter. It shows that the high sensitivity of GMI to applied magnetic field, current, and external stress is very useful for a wide range of industrial and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson D, Squire PT, Maylin MG, Gore J (2000) An integrating magnetic sensor based on the giant magneto-impedance effect. Sens Actuators A 81:82–85

    Article  Google Scholar 

  2. Honkura Y (2002) Development of amorphous wire type MI sensors for automobile use. J Magn Magn Mater 249:375–377

    Article  Google Scholar 

  3. Uchiyama T, Mohri K, Life Fellow, IEEE, Honkura Y, Panina LV (2012) Recent advances of pico-tesla resolution magneto-impedance sensor based on amorphous wire CMOS IC MI sensor. IEEE Trans Magn 48:3833

    Google Scholar 

  4. Kawajiri N, Nakabayashi M, Cai CM, Mohri K, Uchiyama T (1999) Highly stable MI micro sensor using C-MOS IC multivibrator with synchronous rectification. IEEE Trans Magn 35(5):3667–3669

    Article  Google Scholar 

  5. Mohri K, Uchiyama T, Shen LP et al (2002) Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects. IEEE Trans Magn 38(5):3063–3068

    Article  Google Scholar 

  6. Mohri K, Humphrey FB, Panina LV et al (2009) Advances of amorphous wire magnetics over 27 years. Phys Status Solidi A 206(4):601–607

    Article  Google Scholar 

  7. Mohri K, Uchiyama T, Panina LV, Yamamoto M, Bushida K (2015) Recent advances of amorphous wire CMOS IC magneto-impedance sensors: innovative high-performance micromagnetic sensor chip. J Sens Article ID 718069:8

    Google Scholar 

  8. Hauser H, Steindl R, Hausleitner C, Pohl A, Nicolics J (2000) Wirelessly interrogable magnetic field sensor utilizing giant magnetoimpedance effect and surface acoustic wave devices. IEEE Instrum Measur 49:648–652

    Article  Google Scholar 

  9. Al Rowais H, Li B, Liang C, Green S, Gianchandani Y et al. (2011) Development of a passive and remote magnetic microsensor with thin-film giant magnetoimpedance element and surface acoustic wave transponder. J Appl Phys 109:07E524

    Google Scholar 

  10. Valensuela R, Freijo JJ, Salcedo A, Vazquez M, Hernando A (1997) A miniature dc current sensor based on magnetoimpedance. J Appl Phys 81:4301–4303

    Article  Google Scholar 

  11. Rheem YW, Kim CG, Kim CO, Yoon SS (2003) Current sensor application of asymmetric giant magnetoimpedance in amorphous materials. Sen Act A 106:19–21

    Article  Google Scholar 

  12. Malátek M, Ripka P, Kraus L (2005) Double-core GMI current sensor. IEEE Trans Magn 41:3703–3705

    Article  Google Scholar 

  13. Asfour A, Yonnet JP, Zidi M (2012) A high dynamic range GMI current sensor. J Sens Technol 2(4):7p. Article ID:25485. doi:10.4236/jst.2012.24023

    Google Scholar 

  14. Tejedor M, Hernando B, Sanchez ML, Prida VM, Vazquez M (2001) Magneto-impedance effect in amorphous ribbons for stress sensor application. Sens Actuators A 81:98–101

    Article  Google Scholar 

  15. Cobeno AF, Zhukov A, Blanco JM, Larin V, Gonzalez J (2001) Magnetoelastic sensor based on GMI of amorphous microwire. Sen Act A 91:95–98

    Article  Google Scholar 

  16. Bowles A, Gore J, Tomka G (2005) A new, low-cost, stress sensor for battery-free wireless sensor applications. Proc SPIE Int Soc Opt Eng 5765:1104–1111

    Google Scholar 

  17. Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53:323

    Article  Google Scholar 

  18. Lofland SE, Garcia-Miquel H, Vazquez M, Bhagat SM (2002) J Appl Phys 92:2058

    Article  Google Scholar 

  19. García-Miquel H, Esbrí MJ, Andrés JM, García JM, García-Beneytez JM, Vázquez M (2001) IEEE Trans Magn 37:561

    Article  Google Scholar 

  20. Dominguez M, Garcia-Beneytez JM, Vazquez M, Lofland SE, Bhagat SM (2002) J Magn Magn Mater 249:117

    Article  Google Scholar 

  21. Peng HX, Qin FX, Phan MH, Tang J, Panina LV, Ipatov M et al (2009) J Non-Cryst Solids 355:1380

    Article  Google Scholar 

  22. Qin FX, Peng HX (2013) Prog Mater Sci 58:183

    Article  Google Scholar 

  23. Colosimo P, Chen A, Devkota J, Srikanth H, Phan MH (2014) Sensing RF and microwave energy with fiber Bragg grating heating via soft ferromagnetic glass-coated microwires. Sens Actuators A 210:25

    Article  Google Scholar 

  24. Devkota J, Colosimo P, Chen A, Larin VS, Srikanth H, Phan MH (2014) Tailoring magnetic and microwave absorption properties of glass-coated soft ferromagnetic amorphous microwires for microwave energy sensing. J Appl Phys 115:17A525

    Article  Google Scholar 

  25. Zhukov A, Zhukova V (2009) In magnetic properties and applications of ferromagnetic microwires with amorphous and nanocrystalline structure. Nova Science Publishers, Hauppauge, NY, pp 1–162

    Google Scholar 

  26. Zhukova V, Ipatov M, Zhukov A (2009) Thin magnetically soft wires for magnetic microsensors. Sensors 9:9216–9240

    Google Scholar 

  27. Valensuela R, Vazquez M, Hernando A (1996) A position sensor based on magnetoimpedance. J Appl Phys 79:6549–6591

    Article  Google Scholar 

  28. http://www.snpc.org.cn

  29. Díaz-Michelena Marina (2009) Small magnetic sensors for space applications. Sensors 9:2271–2288. doi:10.3390/s90402271

    Article  Google Scholar 

  30. Lenz JE (1990) A review of magnetic sensors. Proc IEEE 78:973–989

    Article  Google Scholar 

  31. Maekawa S, Shinjo T (eds) (2002) Spin dependent transport in magnetic nanostructures. Gordon and Breach Science Publishers, New York (Advances in Condensed Matter Science. Vol. 3)

    Google Scholar 

  32. Uchiyawa T, Mohri K, Itho H, Nakashima K, Ohuchi J, Sudo Y (2000) Car traffic monitoring system using MI sensor built-in disk set on the road. IEEE Trans Magn 36:3670–3672

    Article  Google Scholar 

  33. He Dongfeng, Shiwa Mitsuharu (2014) a magnetic sensor with amorphous wire. Sensors 14:10644–10649. doi:10.3390/s140610644

    Article  Google Scholar 

  34. Kim DJ, Park DA, Hong JH (2002) Nondestructive evaluation of reactor pressure vessel steels using the giant magnetoimpedance sensor. J Appl Phys 91:7421–7423

    Article  Google Scholar 

  35. Goktepe M, Ege Y, Bayri N, Atalay S (2004) Torsional stress impedance effect in Fe71Cr7Si9B13 amorphous wire. Phys Status Solidi (c) 1:3436–3439

    Article  Google Scholar 

  36. Kurlyandskaya GV, Sanchez ML, Hernando B, Prida VM, Gorria P, Tejedor M (2003) Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl Phys Lett 82:3053–3055

    Article  Google Scholar 

  37. Chiriac H, Tibu M, Moga AE, Herea DD (2005) Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater 293:671–673

    Article  Google Scholar 

  38. Devkota J, Ruiz A, Wang C, Mohapatra S, Mukherjee P, Srikanth H, Phan MH (2013) Detection of low-concentration superparamagnetic nanoparticles using an integrated radio frequency magnetic biosensor. J Appl Phys 113:104701

    Article  Google Scholar 

  39. Devkota J, Trang MT, Stojak K, Ha PT, Pham HN, Ngo TL, Phuc NX, Mukherjee P, Srikanth H, Phan MH (2014) Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sens Actuators B 190:715–722

    Google Scholar 

  40. Devkota J, Howell M, Mohapatra S, Mukherjee P, Srikanth H, Phan MH (2015) Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cancer cells. J Appl Phys 117:17D123

    Article  Google Scholar 

  41. Uchiyama T, Nakayama S, Mohri K, Bushida K (2009) Biomagnetic field detection using very high sensitivity magneto-impedance sensors for medical applications. Phys Status Solidi A 206(4):639–643

    Article  Google Scholar 

  42. Nakayama S, Atsuta S, Shinmi T, Uchiyama T (2011) Pulse-driven magnetoimpedance sensor detection of biomagnetic fields in musculatures with spontaneous electric activity. Biosens Bioelectron 27:34–39

    Article  Google Scholar 

  43. Uchiyama T, Mohri K, Nakayama S (2011) Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor. IEEE Trans Magn 47(10):3070–3073

    Article  Google Scholar 

  44. Mohri K, Nakamura Y, Uchiyama T, Mohri Y, Mohri Yu, Inden Y (2010) Sensing of human micro-vibration transmitted along solid using pico-tesla magneto-impedance sensor (pT-MI sensor). Piers Online 6(2):161–164

    Article  Google Scholar 

  45. Knobel M, Pirota KR (2002) Giant magnetoimpedance: concepts and recent progress. J Magn Magn Mater 242–245:33–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Giant Magnetoimpedance Sensors and Their Applications. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics