Skip to main content

Experimental Probing of Non-Fourier Thermal Conductors

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 921))

Abstract

Even though theoretical studies on non-Fourier thermal conduction have continued for many decades, experimental investigations on the topic just started in recent years. In this chapter, I will give my personal reflections on our past and recent experimental progress in elucidating the non-Fourier thermal conduction phenomena in SiGe nanowires, Si-Ge interfaces, multiwall nanotubes, and ultralong singlewall nanotubes. Non-Fourier thermal conduction includes the conventional ballistic thermal conduction in ordinary materials and the anomalous thermal transport in low dimensional systems. Due to finite-size effects, many of the non-Fourier thermal conduction behaviors observed previously can be attributed to conventional ballistic thermal conduction phenomena. On the other hand, significant experimental progress has been made to reveal the anomalous thermal conduction on low-dimensional materials of macroscopic sizes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pomeranchuk, I.: On the thermal conductivity of dielectrics. Phys. Rev. 60, 820–821 (1941)

    Google Scholar 

  2. Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997)

    Google Scholar 

  3. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008)

    Google Scholar 

  4. Li, Y.Y., Liu, S., Li, N.B., Hanggi, P., Li, B.W.: 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport. New J. Phys. 17, 043064 (2015)

    Google Scholar 

  5. Saito, K., Dhar, A.: Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104, 040601 (2010)

    Google Scholar 

  6. Wang, L., He, D.H., Hu, B.B.: Heat conduction in a three-dimensional momentum-conserving anharmonic lattice. Phys. Rev. Lett. 105, 160601 (2010)

    Google Scholar 

  7. Asheghi, M., Leung, Y.K., Wong, S.S., Goodson, K.E.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997)

    Google Scholar 

  8. Ju, Y.S., Goodson, K.E.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999)

    Google Scholar 

  9. Liu, W.J., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98, 123523 (2005)

    Google Scholar 

  10. Li, D.Y., Wu, Y.Y., Kim, P., Shi, L., Yang, P.D., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Google Scholar 

  11. Casimir, H.B.G.: Note on the conduction of heat in crystals. Physica 5, 495–500 (1938)

    Google Scholar 

  12. Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L.: Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000)

    Google Scholar 

  13. Lee, J., Lim, J., Yang, P.D.: Ballistic phonon transport in holey silicon. Nano Lett. 15, 3273–3279 (2015)

    Google Scholar 

  14. Koh, Y.K., Cahill, D.G.: Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007)

    Google Scholar 

  15. Minnich, A.J., Johnson, J.A., Schmidt, A.J., Esfarjani, K., Dresselhaus, M.S., Nelson, K.A., Chen, G.: Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011)

    Google Scholar 

  16. Regner, K.T., Sellan, D.P., Su, Z., Amon, C.H., McGaughey, A.J., Malen, J.A.: Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)

    Google Scholar 

  17. Wilson, R.B., Cahill, D.G.: Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 5, 5075 (2014)

    Google Scholar 

  18. da Cruz, C.A., Li, W., Katcho, N.A.: Role of phonon anharmonicity in time-domain thermoreflectance measurements. Appl. Phys. Lett. 101 (2012)

    Google Scholar 

  19. Huang, B.W., Hsiao, T.K., Lin, K.H., Chiou, D.W., Chang, C.W.: Length-dependent thermal transport and ballistic thermal conduction. AIP Adv. 5, 053202 (2015)

    Google Scholar 

  20. Alvarez-Quintana, J., Rodriguez-Viejo, J., Alvarez, F.X., Jou, D.: Thermal conductivity of thin single-crystalline germanium-on-insulator structures. Int. J. Heat Mass Tran. 54, 1959–1962 (2011)

    Google Scholar 

  21. Johnson, J.A., Maznev, A.A., Cuffe, J., Eliason, J.K., Minnich, A.J., Kehoe, T., Torres, C.M.S., Chen, G., Nelson, K.A.: Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013)

    Google Scholar 

  22. Hu, Y.J., Zeng, L.P., Minnich, A.J., Dresselhaus, M.S., Chen, G.: Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nature Nanotechnol. 10, 701–706 (2015)

    Google Scholar 

  23. Hsiao, T.K., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Observation of room temperature ballistic thermal conduction persisting over 8.3 micrometers in SiGe nanowires. Nature Nanotechnol. 8, 534–538 (2013)

    Google Scholar 

  24. Zhu, G.H., Lee, H., Lan, Y.C., Wang, X.W., Joshi, G., Wang, D.Z., Yang, J., Vashaee, D., Guilbert, H., Pillitteri, A., Dresselhaus, M.S., Chen, G., Ren, Z.F.: Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys. Rev. Lett. 102, 196803 (2009)

    Google Scholar 

  25. Bera, C., Mingo, N., Volz, S.: Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104, 115502 (2010)

    Google Scholar 

  26. Garg, J., Bonini, N., Kozinsky, B., Marzari, N.: Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011)

    Google Scholar 

  27. Maldovan, M.: Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013)

    Google Scholar 

  28. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011)

    Google Scholar 

  29. Chiu, H.Y., Deshpande, V.V., Postma, H.W.C., Lau, C.N., Miko, C., Forro, L., Bockrath, M.: Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 95, 226101 (2005)

    Google Scholar 

  30. Bolotin, K.I., Ghahari, F., Shulman, M.D., Stormer, H.L., Kim, P.: Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009)

    Google Scholar 

  31. Du, X., Skachko, I., Duerr, F., Luican, A., Andrei, E.Y.: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009)

    Google Scholar 

  32. Chen, R.K., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P.D., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)

    Google Scholar 

  33. Hochbaum, A.I., Chen, R.K., Delgado, R.D., Liang, W.J., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.D.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–165 (2008)

    Google Scholar 

  34. Wingert, M.C., Chen, Z.C.Y., Dechaumphai, E., Moon, J., Kim, J.-H., Xiang, J., Chen, R.: Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507–5513 (2011)

    Google Scholar 

  35. Meddins, H.R., Parrott, J.E.: Thermal and thermoelectric properties of sintered germanium-silicon alloys. J. Phys. C Solid State 9, 1263–1276 (1976)

    Google Scholar 

  36. Lu, Q., Adu, K.W., Gutierrez, H.R., Chen, G., Lew, K.-K., Nimmatoori, P., Zhang, X., Dickey, E.C., Redwing, J.M., Eklund, P.C.: Raman scattering from Si1-xGex alloy nanowires. J. Phys. Chem. C 112, 3209–3215 (2008)

    Google Scholar 

  37. Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998)

    Google Scholar 

  38. Prasher, R.: Predicting the thermal resistance of nanosized constrictions. Nano Lett. 5, 2155–2159 (2005)

    Google Scholar 

  39. Steele, M.C., Rosi, F.D.: Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 29, 1517–1520 (1958)

    Google Scholar 

  40. Smith, C.G.: Low-dimensional quantum devices. Rep. Prog. Phys. 59, 235–282 (1996)

    Google Scholar 

  41. Yang, R.G., Chen, G., Dresselhaus, M.S.: Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett. 5, 1111–1115 (2005)

    Google Scholar 

  42. Prasher, R.: Thermal conductivity of tubular and core/shell nanowires. Appl. Phys. Lett. 89, 063121 (2006)

    Google Scholar 

  43. Markussen, T., Jauho, A.P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103 (2009)

    Google Scholar 

  44. Hu, M., Giapis, K.P., Goicochea, J.V., Zhang, X.L., Poulikakos, D.: Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618–623 (2011)

    Google Scholar 

  45. Hu, M., Zhang, X.L., Giapis, K.P., Poulikakos, D.: Thermal conductivity reduction in core-shell nanowires. Phys. Rev. B 84, 085442 (2011)

    Google Scholar 

  46. Chen, J., Zhang, G., Li, B.W.: Impacts of atomistic coating on thermal conductivity of germanium nanowires. Nano Lett. 12, 2826–2832 (2012)

    Google Scholar 

  47. Lu, W., Xiang, J., Timko, B.P., Wu, Y., Lieber, C.M.: One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 102, 10046–10051 (2005)

    Google Scholar 

  48. Xiang, J., Lu, W., Hu, Y.J., Wu, Y., Yan, H., Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006)

    Google Scholar 

  49. Yan, H., Choe, H.S., Nam, S.W., Hu, Y.J., Das, S., Klemic, J.F., Ellenbogen, J.C., Lieber, C.M.: Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011)

    Google Scholar 

  50. Hu, Y.J., Kuemmeth, F., Lieber, C.M., Marcus, C.M.: Hole spin relaxation in Ge-Si core-shell nanowire qubits. Nature Nanotechnol. 7, 47–50 (2012)

    Google Scholar 

  51. Yin, L., Lee, E.K., Lee, J.W., Whang, D., Choi, B.L., Yu, C.: The influence of phonon scatterings on the thermal conductivity of SiGe nanowires. Appl. Phys. Lett. 101, 043114 (2012)

    Google Scholar 

  52. Lee, E.K., Yin, L., Lee, Y., Lee, J.W., Lee, S.J., Lee, J., Cha, S.N., Whang, D., Hwang, G.S., Hippalgaonkar, K., Majumdar, A., Yu, C., Choi, B.L., Kim J.M., Kim, K.: Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 12, 2918–2923 (2012)

    Google Scholar 

  53. Kim, H., Kim, I., Choi, H.J., Kim, W.: Thermal conductivities of Si1-xGex nanowires with different germanium concentrations and diameters. Appl. Phys. Lett. 96, 233106 (2010)

    Google Scholar 

  54. Chang, H.-K., Lee, S.-C.: The growth and radial analysis of Si/Ge core-shell nanowires. Appl. Phys. Lett. 97, 251912 (2010)

    Google Scholar 

  55. Hsiao, T.K., Huang, B.W., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously-interfaced nanowires. Phys. Rev. B 91, 035406 (2015)

    Google Scholar 

  56. Lu, D., Xie, R.G., Yang, N., Li, B.W., Thong, J.T.L.: Profiling nanowire thermal resistance with a spatial resolution of nanometers. Nano Lett. 14, 806–812 (2014)

    Google Scholar 

  57. Slack, G.A., Hussain, M.A.: The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. J. Appl. Phys. 70, 2694–2718 (1991)

    Google Scholar 

  58. Liu, C.-K., Yu, C.-K., Chien, H.-C., Kuo, S.-L., Hsu, C.-Y., Dai, M.-J., Luo, G.-L., Huang, S.-C., Huang, M.-J.: Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 104, 114301 (2008)

    Google Scholar 

  59. Minnich, A.J., Lee, H., Wang, X.W., Joshi, G., Dresselhaus, M.S., Ren, Z.F., Chen, G., Vashaee, D.: Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)

    Google Scholar 

  60. Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009)

    Google Scholar 

  61. Chang, C.W., Fennimore, A.M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D.Y., Majumdar, A., Zettl, A.: Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006)

    Google Scholar 

  62. Mingo, N., Broido, D.A.: Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005)

    Google Scholar 

  63. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier's law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)

    Google Scholar 

  64. Dhar, A., Saito, K.: Heat conduction in the disordered Fermi-Pasta-Ulam chain. Phys. Rev. E 78, 061136 (2008)

    Google Scholar 

  65. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Google Scholar 

  66. Garrido, P.L., Hurtado, P.I., Nadrowski, B.: Simple one-dimensional model of heat conduction which obeys Fourier's law. Phys. Rev. Lett. 86, 5486–5489 (2001)

    Google Scholar 

  67. Hurtado, P.I.: Breakdown of hydrodynamics in a simple one-dimensional fluid. Phys. Rev. Lett. 96, 010601 (2006)

    Google Scholar 

  68. Zhang, G., Li, B.W.: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 114714 (2005)

    Google Scholar 

  69. Wang, J.S., Li, B.W.: Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004)

    Google Scholar 

  70. Prosen, T., Campbell, D.K.: Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys. Rev. Lett. 84, 2857–2860 (2000)

    Google Scholar 

  71. Mingo, N., Broido, D.A.: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett. 5, 1221–1225 (2005)

    Google Scholar 

  72. Lindsay, L., Broido, D.A., Mingo, N.: Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009)

    Google Scholar 

  73. Zheng, L.X., O’Connell, M.J., Doorn, S.K., Liao, X.Z., Zhao, Y.H., Akhadov, E.A., Hoffbauer, M.A., Roop, B.J., Jia, Q.X., Dye, R.C., Peterson, D.E., Huang, S.M., Liu, J., Zhu, Y.T.: Ultralong single-wall carbon nanotubes. Nature Mater. 3, 673–676 (2004)

    Google Scholar 

  74. Hofmann, M., Nezich, D., Reina, A., Kong, J.: In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. Nano Lett. 8, 4122–4127 (2008)

    Google Scholar 

  75. Yu, C.H., Shi, L., Yao, Z., Li, D.Y., Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)

    Google Scholar 

  76. Donadio, D., Galli, G.: Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2007)

    Google Scholar 

  77. Fainchtein, R., Brown, D.M., Siegrist, K.M., Monica, A.H., Hwang, E.R., Milner, S.D., Davis, C.C.: Time-dependent near-blackbody thermal emission from pulsed laser irradiated vertically aligned carbon nanotube arrays. Phys. Rev. B 85, 125432 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Wei Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, CW. (2016). Experimental Probing of Non-Fourier Thermal Conductors. In: Lepri, S. (eds) Thermal Transport in Low Dimensions. Lecture Notes in Physics, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-319-29261-8_8

Download citation

Publish with us

Policies and ethics