Spatial Effects of Delay-Induced Stochastic Oscillations in a Multi-scale Cellular System

  • Dmitry BratsunEmail author
  • Andrey Zakharov
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


The combined spatial effect of time delay and intrinsic noise on gene regulation is studied numerically. It is based on the multi-scale chemo-mechanical model of the epithelium. The protein fluctuations in each cell are described by a single-gene auto-repressor model with constant delay. It is found that time delay, noise and spatial signaling can result in the protein pattern formation even when deterministic description exhibits no patterns.


Stochastic simulations Pattern formation Time delay 



The research has been supported by the Ministry of Education and Science of Perm Region (grant C-26/004.4) and grant of Russian Fund for Basic Research (14-01-96022r_ural_a).


  1. 1.
    Kepler, T.B., Elston, C.: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Hasty, J., Collins, J.J.: Translating the noise. Nat. Gen. 31, 13–14 (2002)CrossRefGoogle Scholar
  3. 3.
    Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., Elowitz, M.B.: Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Tsimring, L.S.: Noise in biology. Rep. Prog. Phys. 77, 026601 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Bratsun, D., Volfson, D., Hasty, J., Tsimring, L.S.: Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102, 14593–14598 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Bratsun, D., Volfson, D., Hasty, J., Tsimring, L.: Non-Marcovian processes in Gene Regulation. In: Kish, L.B., Lindenberg, K., Gingl, Z. (eds.) Noise in Complex Systems and Stochastic Dynamics III. Proceedings of the SPIE, vol. 5845, pp. 210–219 (2005)Google Scholar
  7. 7.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  8. 8.
    Lemerle, C., Di Ventura, B., Serrano, L.: Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579, 1789–1794 (2005)CrossRefGoogle Scholar
  9. 9.
    Li, C.-W., Chen, B.-S.: Stochastic spatio-temporal dynamic model for gene/protein interaction network in early drosophila development. Gene Regul. Syst. Biol. 3, 191–210 (2009)Google Scholar
  10. 10.
    Burrage, K., Burrage, P.M., Leier, A., Marquez-Lago, T., Nicolau, D.V.: Stochastic simulation for spatial modelling of dynamic processes in a living cell. In: Koeppl, H., Densmore, D., Setti, G., Di Bernardo, M. (eds.) Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, pp. 43–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast driven wound contraction: inflammation—mediation. J. Theor. Biol. 158, 135–172 (1992)CrossRefGoogle Scholar
  12. 12.
    Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., Buguin, A., Silberzan, P.: Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. U.S.A. 104, 15988–15993 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Deisboeck, T.S., Stamatakos, G.S.: Multiscale Cancer Modeling. Chapman and Hall/CRC, Boca Raton (2011)zbMATHGoogle Scholar
  14. 14.
    Salm, M., Pismen, L.M.: Chemical and mechanical signaling in epithelial spreading. Phys. Biol. 9, 026009–026023 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Bratsun, D.A., Merkuriev, D.V., Zakharov, A.P., Pismen, L.M.: Multiscale modeling of tumour growth induced by circadian rhythm disruption in epithelial tissue. J. Biol. Phys. 42, 107–132 (2016)Google Scholar
  16. 16.
    Farhadifar, R., Röper, J.C., Aigouy, B., Eaton, S., Jülicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)CrossRefGoogle Scholar
  17. 17.
    Koseska, A., Ullner, E., Volkov, E., Kurths, J., Garcia-Ojalvo, J.: Cooperative differentiation through clustering in multicellular populations. J. Theor. Biol. 263, 189–202 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentPerm State Pedagogical UniversityPermRussia

Personalised recommendations