Complex Synchronization Patterns in the Human Connectome Network

  • Pablo Villegas
  • Jorge Hidalgo
  • Paolo Moretti
  • Miguel A. MuñozEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


A major challenge in neuroscience is posed by the need for relating the emerging dynamical features of brain activity with the underlying modular structure of neural connections, hierarchically organized throughout several scales. The spontaneous emergence of coherence and synchronization across such scales is crucial to neural function, while its anomalies often relate to pathological conditions. Here we provide a numerical study of synchronization dynamics in the human connectome network. Our purpose is to provide a detailed characterization of the recently uncovered broad dynamic regime, interposed between order and disorder, which stems from the hierarchical modular organization of the human connectome. In this regime—similar in essence to a Griffiths phase—synchronization dynamics are trapped within metastable attractors of local coherence. Here we explore the role of noise, as an effective description of external perturbations, and discuss how its presence accounts for the ability of the system to escape intermittently from such attractors and explore complex dynamic repertoires of locally coherent states, in analogy with experimentally recorded patterns of cerebral activity.


Coherent State Noise Amplitude Connectivity Matrix Intermediate Regime Intrinsic Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from J. de Andalucía P09-FQM-4682 and the Spanish MINECO FIS2012-37655-C02-01 and FIS2013-43201-P.


  1. 1.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)CrossRefGoogle Scholar
  2. 2.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–98 (2009)CrossRefGoogle Scholar
  4. 4.
    Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  5. 5.
    Kaiser, M.: A tutorial in connectome analysis: topological and spatial features of brain networks. NeuroImage 57(3), 892–907 (2011)CrossRefGoogle Scholar
  6. 6.
    Meunier, D., Lambiotte, R., Bullmore, E.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)CrossRefGoogle Scholar
  7. 7.
    Zhou, C., Zemanova, L., Zamora-López, G., Hilgetag, C.C., Kurths, J.: Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97(23) (2006)Google Scholar
  8. 8.
    Ivković, M., Amy, K., Ashish, R.: Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution. PLoS ONE 7(6), e35029 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, C., Zemanova, L., Zamora-López, G., Hilgetag, C.C., Kurths, J.: Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 9(6), 178–178 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Kaiser, M., Goerner, M., Hilgetag, C.: Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Kaiser, M., Hilgetag, C.C.: Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front. Neuroinform. 4(8) (2010)Google Scholar
  12. 12.
    Moretti, P., Muñoz, M.A.: Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4(2521) (2013)Google Scholar
  13. 13.
    Vojta, T.: Rare region effects at classical, quantum and nonequilibrium phase transitions. J. Phys. A 39(22), R143–R205 (2006)Google Scholar
  14. 14.
    Muñoz, M.A., Juhász, R., Castellano, C., Ódor, G.: Griffiths phases on complex networks. Phys. Rev. Lett. 105, 128701 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Steinmetz, P.N., Roy, A., Fitzgerald, P.J., Hsiao, S.S., Johnson, K.O., Niebur, E.: Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774), 187–190 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)Google Scholar
  17. 17.
    Buzsáki, G.: Rhythms of the Brain. Oxford University Press, NY (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Breakspear, M., Stam, C.J.: Dynamics of a neural system with a multiscale architecture. Phil. Trans. R. Soc. Lond. B 360(1457), 1051–1074 (2005)CrossRefGoogle Scholar
  19. 19.
    Villegas, P., Moretti, P., Muñoz, M.A.: Frustrated hierarchical synchronization and emergent complexity in the human connectome network. Sci. Rep. 4(5990) (2014)Google Scholar
  20. 20.
    Rosenblum, M.G., Pikovsky, A., Kurths, J.: Synchronization—A universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. Lect. Not. Phys. 39, 420–422 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1), 1–20 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Acebrón, J.A., Bonilla, L.L., Pérez-Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)Google Scholar
  25. 25.
    Chialvo, D.R.: Emergent Complex Neural Dyn. Nat. Phys. 6, 744–750 (2010)Google Scholar
  26. 26.
    Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32(10), 3366–3375 (2012)CrossRefGoogle Scholar
  27. 27.
    Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R.: Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Cabral, J., Hugues, E., Sporns, O., Deco, G.: Role of local network oscillations in resting-state functional connectivity. NeuroImage 57(1), 130–139 (2011)CrossRefGoogle Scholar
  29. 29.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Shanahan, M.: Metastable chimera states in community-structured oscillator networks. Chaos 20(1), 013108 (2010)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., Tlusty, T.: The physics of living neural networks. Phys. Rep. 449(1–3), 54–76 (2007)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Wildie, M., Shanahan, M.: Metastability and chimera states in modular delay and pulse-coupled oscillator networks. Chaos 22(4), 043131 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Villegas
    • 1
  • Jorge Hidalgo
    • 1
  • Paolo Moretti
    • 2
  • Miguel A. Muñoz
    • 1
    Email author
  1. 1.Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  2. 2.Institute of Materials Simulation (WW8)Friedrich-Alexander-University Erlangen-NünbergFürthGermany

Personalised recommendations