Advertisement

Power-Laws as Statistical Mixtures

  • M. PatriarcaEmail author
  • E. Heinsalu
  • L. Marzola
  • A. Chakraborti
  • K. Kaski
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Many complex systems are characterized by power-law distributions. In this article, we show that for various examples of power-law distributions, including the two probably most popular ones, the Pareto law for the wealth distribution and Zipf’s law for the occurrence frequency of words in a written text, the power-law tails of the probability distributions can be decomposed into a statistical mixture of canonical equilibrium probability densities of the subsystems. While the interacting units or subsystems have canonical distributions at equilibrium, as predicted by canonical statistical mechanics, the heterogeneity of the shapes of their distributions leads to the appearance of a power-law.

Keywords

Occurrence Frequency Wealth Distribution Statistical Mixture Partial Distribution Boltzmann Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M.P., E.H., and A.C. acknowledge support from the Estonian Science Foundation Grant no. 9462 and the Institutional Research Funding IUT (IUT39-1) of the Estonian Ministry of Education and Research. A.C. acknowledges financial support from grant number BT/BI/03/004/2003(C) of Government of India, Ministry of Science and Technology, Department of Biotechnology, Bioinformatics Division. L.M. acknowledges the Estonian Research Council for supporting his work with the grant PUTJD110.

References

  1. 1.
    Beck, C.: Stretched exponentials from superstatistics. Physica (Amsterdam) 365A, 96 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Beck, C., Cohen, E.: Superstatistics. Physica A 322, 267–275 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhattacharya, K., Mukherjee, G., Manna, S.S.: Detailed simulation results for some wealth distribution models in econophysics. In: Chatterjee, A., S.Yarlagadda, Chakrabarti, B.K. (eds.) Econophysics of Wealth Distributions, p. 111. Springer (2005)Google Scholar
  4. 4.
    Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17, 167–170 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Chakraborti, A., Patriarca, M.: Gamma-distribution and wealth inequality. Pramana J. Phys. 71, 233 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Chakraborti, A., Patriarca, M.: Variational principle for the Pareto power law. Phys. Rev. Lett. 103, 228701 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Chatterjee, A., Chakrabarti, B.: Ideal-gas like markets: effect of savings. In: Chatterjee, A., S.Yarlagadda, Chakrabarti, B.K. (eds.) Econophysics of Wealth Distributions, pp. 79–92. Springer (2005)Google Scholar
  8. 8.
    Chatterjee, A., Chakrabarti, B.: Kinetic exchange models for income and wealth distributions. Eur. Phys. J. B 60, 135 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K. (eds.): Econophysics of Wealth Distributions—Econophys-Kolkata I. Springer (2005)Google Scholar
  10. 10.
    Church, K.W., Gale, W.A.: Poisson mixtures. J. Natur. Lang. Eng. 103(2), 163 (1995)Google Scholar
  11. 11.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1 and 2. John Wiley & Sons, 2nd edn. (1966)Google Scholar
  12. 12.
    Gerlach, M., Altmann, E.G.: Scaling laws and fluctuations in the statistics of word frequencies. New J. Phys. 16, 113010 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Katriel, G.: Directed random market: the equilibrium distribution. Eur. Phys. J. B 88, 19 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mandelbrot, B.: The Pareto-Levy law and the distribution of income. Int. Econ. Rev. 1, 79 (1960)CrossRefzbMATHGoogle Scholar
  15. 15.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Patriarca, M., Chakraborti, A., Germano, G.: Influence of saving propensity on the power law tail of wealth distribution. Physica A 369, 723 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Patriarca, M., Chakraborti, A., Kaski, K.: Gibbs versus non-Gibbs distributions in money dynamics. Physica A 340, 334 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Patriarca, M., Chakraborti, A., Kaski, K.: Statistical model with a standard gamma distribution. Phys. Rev. E 70, 016104 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Patriarca, M., Chakraborti, A., Kaski, K., Germano, G.: Kinetic theory models for the distribution of wealth: Power law from overlap of exponentials. In: Chatterjee, A., S.Yarlagadda, Chakrabarti, B.K. (eds.) Econophysics of Wealth Distributions. p. 93. Springer (2005)Google Scholar
  20. 20.
    Patriarca, M., Chakraborti, A.: Kinetic exchange models: From molecular physics to social science. Am. J. Phys. 81(8), 618–623 (2013)Google Scholar
  21. 21.
    Patriarca, M., Chakraborti, A., Heinsalu, E., Germano, G.: Relaxation in statistical many-agent economy models. Eur. J. Phys. B 57, 219 (2007)Google Scholar
  22. 22.
    Patriarca , M., Heinsalu, E., Chakraborti, A.: Basic kinetic wealth-exchange models: common features and open problems. Eur. Phys. J. B 73, 145–153 (2010)Google Scholar
  23. 23.
    Treumann, R.A., Jaroschek, C.H.: Gibbsian theory of power-law distributions. Phys. Rev. Lett. 100, 155005 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Patriarca
    • 1
    Email author
  • E. Heinsalu
    • 1
  • L. Marzola
    • 1
    • 2
  • A. Chakraborti
    • 3
  • K. Kaski
    • 4
  1. 1.NICPB–National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Laboratory of Theoretical Physics, Institute of PhysicsUniversity of TartuTartuEstonia
  3. 3.SCIS-School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
  4. 4.Department of Computer ScienceAalto University School of ScienceAaltoFinland

Personalised recommendations