Skip to main content

Multiobjective Optimization and Phase Transitions

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the structure and allometry of plant vascular systems. Nature 400, 664–667 (1999)

    Article  ADS  Google Scholar 

  2. Pérez-Escudero, A., de Polavieja, G.G.: Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104(43), 17180–17185 (2007)

    Article  ADS  Google Scholar 

  3. Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K., Alon, U.: Evolutionary tradeoffs, Pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012)

    Article  ADS  Google Scholar 

  4. Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U.: Multidimensional optimality of microbial metabolism. Science 336, 601–604 (2012)

    Article  ADS  Google Scholar 

  5. Szekely, P., Sheftel, H., Mayo, A., Alon, U.: Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems. PLoS Comput. Biol. 9(8), e1003163 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zipf, G.K.: Human Behavior and the Principle of Least Effort (1949)

    Google Scholar 

  7. Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., Rodrígued-Iturbe, I.: Scaling laws for river networks. Phys. Rev. E 53(2), 1510 (1996)

    Article  ADS  Google Scholar 

  8. Ferrer i Cancho, R., Solé, R.V.: Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci. 100(3), 788–791 (2003)

    Google Scholar 

  9. Barthelemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Louf, R., Jensen, P., Barthelemy, M.: Emergence of hierarchy in cost-driven growth of spatial networks. Proc. Natl. Acad. Sci. 110(22), 8824–8829 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. WW Norton & Company (1986)

    Google Scholar 

  12. Dennett, D.C.: Darwin’s Dangerous Idea. The Sciences (1995)

    Google Scholar 

  13. Seoane, L.F., Solé, R.: Phase transitions in Pareto optimal complex networks. Phys. Rev. E 92, 032807 (2015)

    Article  ADS  Google Scholar 

  14. Avena-Koenigsberger, A., Goñi, J., Solé, R., Sporns, O.: Network morphospace. J. Royal Soc. Interface 12(103), 20140881 (2015)

    Article  Google Scholar 

  15. Goñi, J., Avena-Koenigsberger, A., de Menizabal, N.V., van den Heuvel, M., Betzel, R., Sporns, O.: Exploring the morphospace of communication efficiency in complex networks. PLoS ONE 8, e58070 (2013)

    Article  ADS  Google Scholar 

  16. Priester, C., Schmitt, S., Peixoto, T.P.: Limits and trade-offs of topological network robustness. PLoS ONE 9(9), e108215 (2014)

    Article  ADS  Google Scholar 

  17. Otero-Muras, I., Banga, J.R.: Multicriteria global optimization for biocircuit design. BMC Syst. Biol. 8, 113 (2014)

    Article  Google Scholar 

  18. Seoane, L.F., Solé, R.: A multiobjective optimization approach to statistical mechanics. http://arxiv.org/abs/1310.6372 (2013)

  19. Gibbs, J.W.: A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Conn. Acad. 2, 382–404 (1873)

    MATH  Google Scholar 

  20. Maxwell, J.C.: Theory of Heat. Longmans, Green, and Co., pp. 195–208 (1904)

    Google Scholar 

  21. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3, 1–16 (1995)

    Article  Google Scholar 

  22. Dittes, F.M.: Optimization on rugged landscapes: a new general purpose Monte Carlo approach. Phys. Rev. Lett. 76(25), 4651–4655 (1996)

    Article  ADS  Google Scholar 

  23. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences (1999)

    Google Scholar 

  24. Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. M. 1(1), 28–36 (2006)

    Article  Google Scholar 

  25. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safe. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  26. Solé, R., Seoane, L.F.: Ambiguity in language networks. Linguist. Rev. 32(1), 5–35 (2014)

    Google Scholar 

  27. Prokopenko, M., Ay, N., Obst, O., Polani, D.: Phase transitions in least-effort communications. J. Stat. Mech. 2010(11), P11025 (2010)

    Article  Google Scholar 

  28. Seoane, L.F., Solé, R.: Systems poised to criticality through Pareto selective forces. http://arxiv.org/abs/1510.08697 (2015)

  29. Harte, J.: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press (2011)

    Google Scholar 

  30. Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144(2), 268–302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Phys A. 2004(340), 138–146 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by an ERC Advanced Grant, the Botín Foundation, by Banco Santander through its Santander Universities Global Division and by the Santa Fe Institute. We thank CSL members for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís F. Seoane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Seoane, L.F., Solé, R. (2016). Multiobjective Optimization and Phase Transitions. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_22

Download citation

Publish with us

Policies and ethics