Skip to main content

Nonparametric Estimation of the Preferential Attachment Function in Complex Networks: Evidence of Deviations from Log Linearity

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

We introduce a statistically sound method called PAFit for the joint estimation of preferential attachment and node fitness in temporal complex networks. Together these mechanisms play a crucial role in shaping network topology by governing the way in which nodes acquire new edges over time. PAFit is an advance over previous methods in so far as it does not make any assumptions on the functional form of the preferential attachment function. We found that the application of PAFit to a publicly available Flickr social network dataset turned up clear evidence for a deviation of the preferential attachment function from the popularly assumed log-linear form. What is more, we were surprised to find that hubs are not always the nodes with the highest node fitnesses. PAFit is implemented in an R package of the same name.

Keywords

  • Preferential attachment
  • fitness
  • Prowth models
  • Complex networks
  • MM algorithms
  • Maximum likelihood estimation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-29228-1_13
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-29228-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5

References

  1. Albert, R., Barabási, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Google Scholar 

  2. Bianconni, G., Barabási, A.: Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436 (2001)

    CrossRef  ADS  Google Scholar 

  3. Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002). http://link.aps.org/doi/10.1103/PhysRevLett.89.258702

  4. Capocci, A., Servedio, V., Colaiori, F., Buriol, L., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: The internet encyclopedia wikipedia. Phys. Rev. E 74, 036116 (2006). http://link.aps.org/doi/10.1103/PhysRevE.74.036116

  5. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). http://dx.doi.org/10.1137/070710111

    Google Scholar 

  6. Eom, Y.H., Jeon, C., Jeong, H., Kahng, B.: Evolution of weighted scale-free networks in empirical data. Phys. Rev. E 77, 056105 (2008). http://link.aps.org/doi/10.1103/PhysRevE.77.056105

  7. Erdös, P., Rényi, A.: On random graphs. Publicationes Math. Debrecen 6, 290–297 (1959)

    MATH  Google Scholar 

  8. Gómez, V., Kappen, H.J., Kaltenbrunner, A.: Modeling the structure and evolution of discussion cascades. In: Proceedings of the 22Nd ACM Conference on Hypertext and Hypermedia, pp. 181–190. HT ’11, ACM, New York, NY, USA (2011). http://doi.acm.org/10.1145/1995966.1995992

  9. Herdagdelen, A., Aygn, E., Bingol, H.: A formal treatment of generalized preferential attachment and its empirical validation. EPL (Europhysics Letters) 78(6), 60007 (2007). http://stacks.iop.org/0295-5075/78/i=6/a=60007

    Google Scholar 

  10. Hunter, D., Lange, K.: Quantile regression via an mm algorithm. J. Comput. Graph. Stat 60–77 (2000)

    Google Scholar 

  11. Jeong, H., Néda, Z., Barabási, A.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61(61), 567–572 (2003)

    CrossRef  ADS  Google Scholar 

  12. Kong, J., Sarshar, N., Roychowdhury, V.: Experience versus talent shapes the structure of the web. Proc. Nat. Acad. Sci. USA 37, 105 (2008)

    Google Scholar 

  13. Kou, Z., Zhang, C.: Reply networks on a bulletin board system. Phys. Rev. E 67, 036117 (2003)

    CrossRef  Google Scholar 

  14. Krapivsky, P., Rodgers, G., Redner, S.: Organization of growing networks. Phys. Rev. E 066123 (2001)

    Google Scholar 

  15. Kunegis, J., Blattner, M., Moser, C.: Preferential attachment in online networks: Measurement and explanations. In: WebSci’13. France (May 2013)

    Google Scholar 

  16. Lange, K.: Numerical Analysis for Statisticians. Springer, New York (2014)

    MATH  Google Scholar 

  17. Lu, L., Zhou, T.: Link prediction in complex networks: A survey. Phys. A: Stat. Mech. Appl. 390(6), 1150– 170 (2011). http://www.sciencedirect.com/science/article/pii/S037843711000991X

    Google Scholar 

  18. Massen, C., Jonathan, P.: Preferential attachment during the evolution of a potential energy landscape. J. Chem. Phys. 127, 114306 (2007)

    CrossRef  ADS  Google Scholar 

  19. Mislove, A., Koppula, H., Gummadi, K., Druschel, P., Bhattacharjee, B.: Growth of the flickr social network. In: Proceedings of the Workshop on Online Social Networks, pp. 25–30 (2008)

    Google Scholar 

  20. Newman, M.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    CrossRef  ADS  Google Scholar 

  21. Newman, M.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    CrossRef  ADS  Google Scholar 

  22. Onodera, T., Sheridan, P.: Maximum likelihood estimation of preferential attachment in growing networks. Topologica 3 (2014)

    Google Scholar 

  23. Pham, T., Sheridan, P., Shimodaira, H.: Pafit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS ONE 10(9), e0137796 (09 2015). http://dx.doi.org/10.1371/journal.pone.0137796

  24. Pham, T., Sheridan, P., Shimodaira, H.: PAFit: Nonparametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks (2015). http://cran.r-project.org/package=PAFit (r package version 0.7.5)

  25. Price, D.d.S.: Networks of scientific papers. Science 149(3683), 510–515 (1965). http://www.sciencemag.org/content/149/3683/510.short

    Google Scholar 

  26. Price, D.d.S.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27, 292–306 (1976)

    Google Scholar 

  27. Redner, S.: Citation statistics from 110 years of physical review. Phys. Today 58(6), 49–54 (2005)

    CrossRef  Google Scholar 

  28. Sheridan, P., Yagahara, Y., Shimodaira, H.: Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo. Phys. A, Stat. Mech. Appl. 391, 5031–5040 (2012)

    Google Scholar 

  29. Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3–4), 425–440 (1955). http://biomet.oxfordjournals.org/content/42/3-4/425.short

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Japan Society for the Promotion of Science KAKENHI (Grant numbers 26120523 and 24300106 to Hidetoshi Shimodaira).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thong Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pham, T., Sheridan, P., Shimodaira, H. (2016). Nonparametric Estimation of the Preferential Attachment Function in Complex Networks: Evidence of Deviations from Log Linearity. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_13

Download citation