Abstract
We introduce a statistically sound method called PAFit for the joint estimation of preferential attachment and node fitness in temporal complex networks. Together these mechanisms play a crucial role in shaping network topology by governing the way in which nodes acquire new edges over time. PAFit is an advance over previous methods in so far as it does not make any assumptions on the functional form of the preferential attachment function. We found that the application of PAFit to a publicly available Flickr social network dataset turned up clear evidence for a deviation of the preferential attachment function from the popularly assumed log-linear form. What is more, we were surprised to find that hubs are not always the nodes with the highest node fitnesses. PAFit is implemented in an R package of the same name.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, R., Barabási, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Bianconni, G., Barabási, A.: Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436 (2001)
Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002). http://link.aps.org/doi/10.1103/PhysRevLett.89.258702
Capocci, A., Servedio, V., Colaiori, F., Buriol, L., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: The internet encyclopedia wikipedia. Phys. Rev. E 74, 036116 (2006). http://link.aps.org/doi/10.1103/PhysRevE.74.036116
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). http://dx.doi.org/10.1137/070710111
Eom, Y.H., Jeon, C., Jeong, H., Kahng, B.: Evolution of weighted scale-free networks in empirical data. Phys. Rev. E 77, 056105 (2008). http://link.aps.org/doi/10.1103/PhysRevE.77.056105
Erdös, P., Rényi, A.: On random graphs. Publicationes Math. Debrecen 6, 290–297 (1959)
Gómez, V., Kappen, H.J., Kaltenbrunner, A.: Modeling the structure and evolution of discussion cascades. In: Proceedings of the 22Nd ACM Conference on Hypertext and Hypermedia, pp. 181–190. HT ’11, ACM, New York, NY, USA (2011). http://doi.acm.org/10.1145/1995966.1995992
Herdagdelen, A., Aygn, E., Bingol, H.: A formal treatment of generalized preferential attachment and its empirical validation. EPL (Europhysics Letters) 78(6), 60007 (2007). http://stacks.iop.org/0295-5075/78/i=6/a=60007
Hunter, D., Lange, K.: Quantile regression via an mm algorithm. J. Comput. Graph. Stat 60–77 (2000)
Jeong, H., Néda, Z., Barabási, A.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61(61), 567–572 (2003)
Kong, J., Sarshar, N., Roychowdhury, V.: Experience versus talent shapes the structure of the web. Proc. Nat. Acad. Sci. USA 37, 105 (2008)
Kou, Z., Zhang, C.: Reply networks on a bulletin board system. Phys. Rev. E 67, 036117 (2003)
Krapivsky, P., Rodgers, G., Redner, S.: Organization of growing networks. Phys. Rev. E 066123 (2001)
Kunegis, J., Blattner, M., Moser, C.: Preferential attachment in online networks: Measurement and explanations. In: WebSci’13. France (May 2013)
Lange, K.: Numerical Analysis for Statisticians. Springer, New York (2014)
Lu, L., Zhou, T.: Link prediction in complex networks: A survey. Phys. A: Stat. Mech. Appl. 390(6), 1150– 170 (2011). http://www.sciencedirect.com/science/article/pii/S037843711000991X
Massen, C., Jonathan, P.: Preferential attachment during the evolution of a potential energy landscape. J. Chem. Phys. 127, 114306 (2007)
Mislove, A., Koppula, H., Gummadi, K., Druschel, P., Bhattacharjee, B.: Growth of the flickr social network. In: Proceedings of the Workshop on Online Social Networks, pp. 25–30 (2008)
Newman, M.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)
Newman, M.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46, 323–351 (2005)
Onodera, T., Sheridan, P.: Maximum likelihood estimation of preferential attachment in growing networks. Topologica 3 (2014)
Pham, T., Sheridan, P., Shimodaira, H.: Pafit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS ONE 10(9), e0137796 (09 2015). http://dx.doi.org/10.1371/journal.pone.0137796
Pham, T., Sheridan, P., Shimodaira, H.: PAFit: Nonparametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks (2015). http://cran.r-project.org/package=PAFit (r package version 0.7.5)
Price, D.d.S.: Networks of scientific papers. Science 149(3683), 510–515 (1965). http://www.sciencemag.org/content/149/3683/510.short
Price, D.d.S.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27, 292–306 (1976)
Redner, S.: Citation statistics from 110 years of physical review. Phys. Today 58(6), 49–54 (2005)
Sheridan, P., Yagahara, Y., Shimodaira, H.: Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo. Phys. A, Stat. Mech. Appl. 391, 5031–5040 (2012)
Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3–4), 425–440 (1955). http://biomet.oxfordjournals.org/content/42/3-4/425.short
Acknowledgments
This work was supported by grants from Japan Society for the Promotion of Science KAKENHI (Grant numbers 26120523 and 24300106 to Hidetoshi Shimodaira).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Pham, T., Sheridan, P., Shimodaira, H. (2016). Nonparametric Estimation of the Preferential Attachment Function in Complex Networks: Evidence of Deviations from Log Linearity. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-29228-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29226-7
Online ISBN: 978-3-319-29228-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)