Interests Propagation in Computer Science Research Community

  • Gregorio D’Agostino
  • Antonio De NicolaEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


This work proposes a framework to study the propagation of individual interests in scientific social networks. We analyze the domain of computer science and we profile members of the social network by means of semantic techniques. We model the evolution of interests as a diffusion process and we measure individual features, such as members’ susceptibilities and authorities. The DBLP (Digital Bibliography and Library Project) dataset has been selected as main source since it provides an extensive list of scientific publications in this field.


Social networks Semantic analysis Interest diffusion Complex systems DBLP 



The authors are indebted to Fulvio D’Antonio for providing the preliminary set of topics. Salvatore Tucci, Emiliano Casalicchio, and Francesco Lo Presti are kindly acknowledged for stimulating discussions.


  1. 1.
    Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Nat. Acad. Sci. 106(51), 21544–21549 (2009)Google Scholar
  2. 2.
    Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337(6092), 337–341 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bojārs, U., Breslin, J., Finn, A., Decker, S.: Using the semantic web for linking and reusing data across web 2.0 communities. Web Seman.: Sci., Ser. Agents World Wide Web 6(1), 21–28 (2008)CrossRefGoogle Scholar
  5. 5.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Cucchiarelli, A., D’Antonio, F., Velardi, P.: Semantically interconnected social networks. Soc. Netw. Anal. Min. 2(1), 69–95 (2012)CrossRefGoogle Scholar
  7. 7.
    D’Agostino, G., D’Antonio, F., De Nicola, A., Tucci, S.: Interests diffusion in social networks. Physica A 436, 443–461 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    De Nicola, A., Missikoff, M., Navigli, R.: A software engineering approach to ontology building. Inf. Syst. 34(2), 258–275 (2009)CrossRefGoogle Scholar
  9. 9.
    Galam, S.: Local dynamics vs. social mechanisms: A unifying frame. EPL (Europhys. Lett.) 70(6), 705 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Gomez, S., Diaz-Guilera, A., Gomez-Gardeñes, J., Perez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, pp. 241–250. WSDM ’10, ACM (2010)Google Scholar
  12. 12.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. KDD ’03, ACM (2003)Google Scholar
  13. 13.
    Manski, C.F.: Identification Problems in the Social Sciences. Harvard University Press (1995)Google Scholar
  14. 14.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Seman.: Sci., Serv. Agents World Wide Web 5(1), 5–15 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses and dedicated web sites. Comput. Linguist. 30(2), 151–179 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Palla, G., Vicsek, T.: Statistical properties of community dynamics in large social networks. Int. J. Agent Technol. Syst. (IJATS) 1(4), 1–16 (2009)CrossRefGoogle Scholar
  17. 17.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Petersen, A.M., Fortunato, S., Pan, R.K., Kaski, K., Penner, O., Rungi, A., Riccaboni, M., Stanley, H.E., Pammolli, F.: Reputation and impact in academic careers. Proc. Nat. Acad. Sci. 111(43), 15316–15321 (2014)Google Scholar
  19. 19.
    Quattrociocchi, W., Caldarelli, G., Scala, A.: Opinion dynamics on interacting networks: media competition and social influence. Sci. R. 4 (2014)Google Scholar
  20. 20.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95–130 (1998)zbMATHGoogle Scholar
  21. 21.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70. KDD ’02, ACM (2002)Google Scholar
  22. 22.
    Shao, J., Havlin, S., Stanley, H.E.: Dynamic opinion model and invasion percolation. Phys. Rev. Lett. 103(1), 018701 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Sowa, J.F.: Semantic networks. Encyclopedia of Cognitive Science (2006)Google Scholar
  24. 24.
    Vespignani, A.: Modelling dynamical processes in complex socio-technical systems. Nat. Phys. 8(1), 32–39 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, D., Song, C., Barabási, A.L.: Quantifying long-term scientific impact. Science 342(6154), 127–132 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, D., Wen, Z., Tong, H., Lin, C.Y., Song, C., Barabási, A.L.: Information spreading in context. In: Proceedings of the 20th International Conference on World Wide Web. pp. 735–744. WWW ’11, ACM, New York, NY, USA (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ENEA-CR CasacciaRomeItaly
  2. 2.University of Rome Tor VergataRomeItaly
  3. 3.Center for Polymer StudiesBoston UniversityBostonUSA

Personalised recommendations