Skip to main content

The Effects of Hypertension and Stroke on the Cerebral Vasculature

  • Chapter
  • First Online:
Hypertension and Stroke

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Hypertension and stroke both have detrimental effects on the cerebral arteries. Stroke impairs myogenic tone generation and the regulation of blood flow. It also alters the structure of the cerebral arteries such that the lumen diameter of the ischemic artery increases after ischemia/reperfusion injury. Hypertension also causes artery remodeling but this results in a reduction in the lumen diameter of the arteries that could increase the risk of cerebral ischemia and the damage caused by it. Hypertension is a leading risk factor for stroke. Given the increasing interest in the vasculature as a therapeutic target for acute ischemic stroke, it would seem important that we develop a better understanding of the combined effects of hypertension and stroke on the cerebral arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vander AJ, Sherman JH, Luciano DS. Human physiology: the mechanisms of body function. 5th ed. New York: McGraw-Hill; 1990.

    Google Scholar 

  2. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26(7–8):1057–83.

    PubMed  Google Scholar 

  3. del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res. 2000;98(3):73–81.

    Article  PubMed  Google Scholar 

  4. Hirsch S, et al. Topology and hemodynamics of the cortical cerebrovascular system. J Cereb Blood Flow Metab. 2012;32(6):952–67.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coyle P. Dorsal cerebral collaterals of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY). Anat Rec. 1987;218(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  6. Cipolla MJ. The cerebral circulation. San Rafael: Morgan & Claypool Life Sciences; 2009.

    Google Scholar 

  7. Schaffer CB, et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 2006;4(2), e22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Baran U, Li Y, Wang RK. Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke. Neurophotonics. 2015;2(2):025006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol. 2006;100(3):1059–64.

    Article  PubMed  Google Scholar 

  10. Edvinsson L, Krause DN. Cerebral blood flow and metabolism. Philadelphia: Lippincott, Williams & Wilkins; 2002.

    Google Scholar 

  11. Ayata C, et al. L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab. 1996;16(4):539–41.

    Article  CAS  PubMed  Google Scholar 

  12. Nishimura N, et al. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2007;104(1):365–70.

    Article  CAS  PubMed  Google Scholar 

  13. Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab. 1997;17(8):894–904.

    Article  CAS  PubMed  Google Scholar 

  15. Filosa JA, et al. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. 2015. doi:10.1016/j.neuroscience.2015.03.064.

    Google Scholar 

  16. Gobel U, Theilen H, Kuschinsky W. Congruence of total and perfused capillary network in rat brains. Circ Res. 1990;66(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  17. Shih AY, et al. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation. 2015;22:204–18.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sa-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol. 2012;45(2):327–47.

    Article  CAS  PubMed  Google Scholar 

  19. Hill RA, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalkara T, Gursoy-Ozdemir Y, Yemisci M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 2011;122(1):1–9.

    Article  PubMed  Google Scholar 

  21. Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7(11):1031–8.

    CAS  PubMed  Google Scholar 

  22. Dirnagl U. Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci. 2012;1268:21–5.

    Article  PubMed  Google Scholar 

  23. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  24. Koehler RC, Gebremedhin D, Harder DR. Role of astrocytes in cerebrovascular regulation. J Appl Physiol (1985). 2006;100(1):307–17.

    Article  CAS  Google Scholar 

  25. Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol. 2014;306(1):H1–14.

    Article  CAS  PubMed  Google Scholar 

  26. Bloch S, Obari D, Girouard H. Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation. 2015;22(3):159–67.

    CAS  PubMed  Google Scholar 

  27. Iliff JJ, et al. Epoxyeicosanoids as mediators of neurogenic vasodilation in cerebral vessels. Am J Physiol Heart Circ Physiol. 2009;296(5):H1352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harder DR, et al. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke. 1998;29(1):229–34.

    Article  CAS  PubMed  Google Scholar 

  29. Dirnagl U, et al. Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol. 1994;267(1 Pt 2):H296–301.

    CAS  PubMed  Google Scholar 

  30. Lindauer U, et al. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am J Physiol. 1999;277(2 Pt 2):H799–811.

    CAS  PubMed  Google Scholar 

  31. Niwa K, et al. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci. 2000;20(2):763–70.

    CAS  PubMed  Google Scholar 

  32. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82(1):131–85.

    Article  CAS  PubMed  Google Scholar 

  33. Jennings JR, et al. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology. 2005;64(8):1358–65.

    Article  CAS  PubMed  Google Scholar 

  34. Kazama K, et al. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285(5):H1890–9.

    Article  CAS  PubMed  Google Scholar 

  35. Capone C, et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol. 2011;300(1):H397–407.

    Article  CAS  PubMed  Google Scholar 

  36. Kazama K, et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95(10):1019–26.

    Article  CAS  PubMed  Google Scholar 

  37. Calcinaghi N, et al. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke. 2013;44(7):1957–64.

    Article  PubMed  Google Scholar 

  38. Inao S, et al. Neural activation of the brain with hemodynamic insufficiency. J Cereb Blood Flow Metab. 1998;18(9):960–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yamauchi H, et al. Altered patterns of blood flow response during visual stimulation in carotid artery occlusive disease. Neuroimage. 2005;25(2):554–60.

    Article  PubMed  Google Scholar 

  40. Ginsberg MD, et al. Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: evidence for functional diaschisis. J Cereb Blood Flow Metab. 1989;9(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  41. Kunz A, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.

    Article  CAS  PubMed  Google Scholar 

  42. Ueki M, Linn F, Hossmann KA. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab. 1988;8(4):486–94.

    Article  CAS  PubMed  Google Scholar 

  43. Baker WB, et al. Neurovascular coupling varies with level of global cerebral ischemia in a rat model. J Cereb Blood Flow Metab. 2013;33(1):97–105.

    Article  PubMed  Google Scholar 

  44. Shen Q, et al. Functional, perfusion and diffusion MRI of acute focal ischemic brain injury. J Cereb Blood Flow Metab. 2005;25(10):1265–79.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279(2):H511–9.

    CAS  PubMed  Google Scholar 

  46. Cipolla MJ, Porter JM, Osol G. High glucose concentrations dilate cerebral arteries and diminish myogenic tone through an endothelial mechanism. Stroke. 1997;28(2):405–10; discussion 410–1.

    Article  CAS  PubMed  Google Scholar 

  47. Faraci FM, Brian Jr JE. Nitric oxide and the cerebral circulation. Stroke. 1994;25(3):692–703.

    Article  CAS  PubMed  Google Scholar 

  48. Malomvolgyi B, et al. Relaxation by prostacyclin (PGI2) and 7-oxo-PGI2 of isolated cerebral, coronary and mesenteric arteries. Acta Physiol Acad Sci Hung. 1982;60(4):251–6.

    CAS  PubMed  Google Scholar 

  49. Gonzales RJ, Krause DN, Duckles SP. Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2004;286(2):H552–60.

    Article  CAS  PubMed  Google Scholar 

  50. Faraci FM, Baumbach GL, Heistad DD. Myogenic mechanisms in the cerebral circulation. J Hypertens Suppl. 1989;7(4):S61–4; discussion S65.

    CAS  PubMed  Google Scholar 

  51. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    CAS  PubMed  Google Scholar 

  52. Osol G, et al. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002;283(6):H2260–7.

    Article  CAS  PubMed  Google Scholar 

  53. Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902;28(3):220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Talman WT, Nitschke Dragon D. Neuronal nitric oxide mediates cerebral vasodilatation during acute hypertension. Brain Res. 2007;1139:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duchemin S, et al. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits. 2012;6:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jones SC, et al. Cortical NOS inhibition raises the lower limit of cerebral blood flow-arterial pressure autoregulation. Am J Physiol. 1999;276(4 Pt 2):H1253–62.

    CAS  PubMed  Google Scholar 

  57. Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res. 2012;49(5):375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hamner JW, et al. Sympathetic control of the cerebral vasculature in humans. Stroke. 2010;41(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  59. Hamner JW, et al. Cholinergic control of the cerebral vasculature in humans. J Physiol. 2012;590(Pt 24):6343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Osol G, Halpern W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am J Physiol. 1985;249(5 Pt 2):H914–21.

    CAS  PubMed  Google Scholar 

  61. Barry DI. Cerebral blood flow in hypertension. J Cardiovasc Pharmacol. 1985;7(2):S94–8.

    Article  PubMed  Google Scholar 

  62. Jarajapu YP, Knot HJ. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension. Am J Physiol Heart Circ Physiol. 2005;289(5):H1917–22.

    Article  CAS  PubMed  Google Scholar 

  63. Ibrahim J, et al. Sex-specific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2006;290(3):H1081–9.

    Article  CAS  PubMed  Google Scholar 

  64. Yamori Y, et al. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976;7(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  65. Yamori Y, et al. Cerebral stroke and myocardial lesions in stroke-prone SHR. Jpn Heart J. 1978;19(4):609–11.

    Article  CAS  PubMed  Google Scholar 

  66. Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309(1):H127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Izzard AS, et al. Myogenic and structural properties of cerebral arteries from the stroke-prone spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2003;285(4):H1489–94.

    Article  CAS  PubMed  Google Scholar 

  68. Smeda JS, VanVliet BN, King SR. Stroke-prone spontaneously hypertensive rats lose their ability to auto-regulate cerebral blood flow prior to stroke. J Hypertens. 1999;17(12 Pt 1):1697–705.

    Article  CAS  PubMed  Google Scholar 

  69. Ishizuka T, et al. Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats. J Hypertens. 2007;25(4):861–70.

    Article  CAS  PubMed  Google Scholar 

  70. Griffin KA, et al. Differential salt-sensitivity in the pathogenesis of renal damage in SHR and stroke prone SHR. Am J Hypertens. 2001;14(4 Pt 1):311–20.

    Article  CAS  PubMed  Google Scholar 

  71. Toth P, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33(11):1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toth P, et al. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol. 2013;305(12):H1698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Welsh DG, et al. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res. 2002;90(3):248–50.

    Article  CAS  PubMed  Google Scholar 

  74. Yamakawa H, et al. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371–80.

    Article  CAS  PubMed  Google Scholar 

  75. Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res. 2011;34(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  76. Paravicini TM, Sobey CG. Cerebral vascular effects of reactive oxygen species: recent evidence for a role of NADPH-oxidase. Clin Exp Pharmacol Physiol. 2003;30(11):855–9.

    Article  CAS  PubMed  Google Scholar 

  77. Bryan Jr RM, et al. Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology. 2005;102(6):1261–77.

    Article  CAS  PubMed  Google Scholar 

  78. Stankevicius E, et al. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. J Pharmacol Exp Ther. 2011;339(3):842–50.

    Article  CAS  PubMed  Google Scholar 

  79. Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol. 2003;285(4):H1590–9.

    Article  CAS  PubMed  Google Scholar 

  80. Si H, et al. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res. 2006;99(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  81. Earley S, Brayden JE. Transient receptor potential channels and vascular function. Clin Sci (Lond). 2010;119(1):19–36.

    Article  CAS  Google Scholar 

  82. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007;76:387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reading SA, et al. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol. 2005;288(5):H2055–61.

    Article  CAS  PubMed  Google Scholar 

  84. Noorani MM, Noel RC, Marrelli SP. Upregulated TRPC3 and downregulated TRPC1 channel expression during hypertension is associated with increased vascular contractility in Rat. Front Physiol. 2011;2:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Earley S, et al. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 2005;97(12):1270–9.

    Article  CAS  PubMed  Google Scholar 

  86. Earley S. Endothelium-dependent cerebral artery dilation mediated by transient receptor potential and Ca2+-activated K+ channels. J Cardiovasc Pharmacol. 2011;​57(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  87. Dunn KM, et al. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295(6):H2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dorrance AM, et al. An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2005;46(6):842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Simpkins AN, et al. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am J Pathol. 2009;174(6):2086–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palomares SM, Cipolla MJ. Vascular protection following cerebral ischemia and reperfusion. J Neurol Neurophysiol. 2011;2011:S1-004.

    PubMed  PubMed Central  Google Scholar 

  91. Gourley JK, Heistad DD. Characteristics of reactive hyperemia in the cerebral circulation. Am J Physiol. 1984;246(1 Pt 2):H52–8.

    CAS  PubMed  Google Scholar 

  92. Sundt Jr TM, Waltz AG. Cerebral ischemia and reactive hyperemia. Studies of cortical blood flow and microcirculation before, during, and after temporary occlusion of middle cerebral artery of squirrel monkeys. Circ Res. 1971;28(4):426–33.

    Article  PubMed  Google Scholar 

  93. Hayakawa T, Waltz AG, Hansen T. Relationships among intracranial pressure, blood pressure, and superficial cerebral vasculature after experimental occlusion of one middle cerebral artery. Stroke. 1977;8(4):426–32.

    Article  CAS  PubMed  Google Scholar 

  94. Skinhoj E, et al. Regional cerebral blood flow and its autoregulation in patients with transient focal cerebral ischemic attacks. Neurology. 1970;20(5):485–93.

    Article  CAS  PubMed  Google Scholar 

  95. Olsen TS, et al. Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical significance. Stroke. 1981;12(5):598–607.

    Article  CAS  PubMed  Google Scholar 

  96. Macfarlane R, et al. The role of neuroeffector mechanisms in cerebral hyperperfusion syndromes. J Neurosurg. 1991;75(6):845–55.

    Article  CAS  PubMed  Google Scholar 

  97. Perez-Asensio FJ, et al. Antioxidant CR-6 protects against reperfusion injury after a transient episode of focal brain ischemia in rats. J Cereb Blood Flow Metab. 2010;30(3):638–52.

    Article  CAS  PubMed  Google Scholar 

  98. Onetti Y, et al. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment. Am J Physiol Heart Circ Physiol. 2015;308(8):H862–74.

    Article  CAS  PubMed  Google Scholar 

  99. Coyle P, Heistad DD. Blood flow through cerebral collateral vessels in hypertensive and normotensive rats. Hypertension. 1986;8(6 Pt 2):II67–71.

    CAS  PubMed  Google Scholar 

  100. Coyle P, Jokelainen PT. Differential outcome to middle cerebral artery occlusion in spontaneously hypertensive stroke-prone rats (SHRSP) and Wistar Kyoto (WKY) rats. Stroke. 1983;14(4):605–11.

    Article  CAS  PubMed  Google Scholar 

  101. Cipolla MJ, et al. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997;28(1):176–80.

    Article  CAS  PubMed  Google Scholar 

  102. Cipolla MJ, et al. Threshold duration of ischemia for myogenic tone in middle cerebral arteries: effect on vascular smooth muscle actin. Stroke. 2001;32(7):1658–64.

    Article  CAS  PubMed  Google Scholar 

  103. Cipolla MJ, Curry AB. Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity. Stroke. 2002;33(8):2094–9.

    Article  PubMed  Google Scholar 

  104. Jimenez-Altayo F, et al. Participation of oxidative stress on rat middle cerebral artery changes induced by focal cerebral ischemia: beneficial effects of 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6). J Pharmacol Exp Ther. 2009;​331(2):429–36.

    Article  CAS  PubMed  Google Scholar 

  105. Coucha M, et al. Protein nitration impairs the myogenic tone of rat middle cerebral arteries in both ischemic and nonischemic hemispheres after ischemic stroke. Am J Physiol Heart Circ Physiol. 2013;305(12):H1726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jimenez-Altayo F, et al. Transient middle cerebral artery occlusion causes different structural, mechanical, and myogenic alterations in normotensive and hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;293(1):H628–35.

    Article  CAS  PubMed  Google Scholar 

  107. Marrelli SP, et al. P2 purinoceptor-mediated dilations in the rat middle cerebral artery after ischemia-reperfusion. Am J Physiol. 1999;276(1 Pt 2):H33–41.

    CAS  PubMed  Google Scholar 

  108. Cipolla MJ, et al. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40(4):1451–7.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation. 2008;15(6):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cipolla MJ, Li R, Vitullo L. Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharmacol. 2004;44(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  111. Dabertrand F, Nelson MT, Brayden JE. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circ Res. 2012;110(2):285–94.

    Article  CAS  PubMed  Google Scholar 

  112. Nishimura N, et al. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab. 2010;30(12):1914–27.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shih AY, et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 2013;16(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  114. Marrelli SP. Altered endothelial Ca2+ regulation after ischemia/reperfusion produces potentiated endothelium-derived hyperpolarizing factor-mediated dilations. Stroke. 2002;33(9):2285–91.

    Article  CAS  PubMed  Google Scholar 

  115. Marrelli SP, et al. PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol Heart Circ Physiol. 2007;292(3):H1390–7.

    Article  CAS  PubMed  Google Scholar 

  116. Cipolla MJ, et al. Mechanisms of enhanced basal tone of brain parenchymal arterioles during early postischemic reperfusion: role of ET-1-induced peroxynitrite generation. J Cereb Blood Flow Metab. 2013;33(10):1486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Powers WJ, et al. Autoregulation of cerebral blood flow surrounding acute (6 to 22 hours) intracerebral hemorrhage. Neurology. 2001;57(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  118. Powers WJ, et al. Autoregulation after ischaemic stroke. J Hypertens. 2009;​27(11):​2218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sokolova IA, et al. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res. 1985;30(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  120. Suzuki K, et al. Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J Stroke Cerebrovasc Dis. 2003;12(1):8–16.

    Article  PubMed  Google Scholar 

  121. Paiardi S, et al. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2009;42(4):259–68.

    CAS  PubMed  Google Scholar 

  122. Coyle P, Heistad DD. Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke. 1987;18(2):407–11.

    Article  CAS  PubMed  Google Scholar 

  123. Harper SL, Bohlen HG. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension. 1984;6(3):408–19.

    Article  CAS  PubMed  Google Scholar 

  124. Werber AH, et al. No rarefaction of cerebral arterioles in hypertensive rats. Can J Physiol Pharmacol. 1990;68(4):476–9.

    Article  CAS  PubMed  Google Scholar 

  125. Noon JP, et al. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997;99(8):1873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Serne EH, et al. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38(2):238–42.

    Article  CAS  PubMed  Google Scholar 

  127. Serne EH, et al. Capillary recruitment is impaired in essential hypertension and relates to insulin’s metabolic and vascular actions. Cardiovasc Res. 2001;49(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  128. Nazzaro P, et al. Effect of clustering of metabolic syndrome factors on capillary and cerebrovascular impairment. Eur J Intern Med. 2013;24(2):183–8.

    Article  PubMed  Google Scholar 

  129. Mulvany MJ, et al. Vascular remodeling. Hypertension. 1996;28(3):505–6.

    CAS  PubMed  Google Scholar 

  130. Baumbach GL, Chillon JM. Effects of angiotensin-converting enzyme inhibitors on cerebral vascular structure in chronic hypertension. J Hypertens Suppl. 2000;18(1):S7–11.

    Article  CAS  PubMed  Google Scholar 

  131. Heagerty AM, et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension. 1993;21(4):391–7.

    Article  CAS  PubMed  Google Scholar 

  132. Heistad DD, et al. Impaired dilatation of cerebral arterioles in chronic hypertension. Blood Vessels. 1990;27(2-5):258–62.

    CAS  PubMed  Google Scholar 

  133. Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol. 2012;110(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  134. Pires PW, et al. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304(12):H1598–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Folkow B, et al. Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in spontaneously hypertensive rats. Circ Res. 1973;32(1):2–16.

    PubMed  Google Scholar 

  136. Hayashi K, Naiki T. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater. 2009;2(1):3–19.

    Article  PubMed  Google Scholar 

  137. Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension. 1988;12(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  138. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45(6):1050–5.

    Article  CAS  PubMed  Google Scholar 

  139. Kety SS, Hafkenschiel JH, et al. The blood flow, vascular resistance, and oxygen consumption of the brain in essential hypertension. J Clin Invest. 1948;27(4):511–4.

    Article  CAS  PubMed Central  Google Scholar 

  140. Beason-Held LL, et al. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38(6):1766–73.

    Article  PubMed  Google Scholar 

  141. Muller M, et al. Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol. 2012;71(6):825–33.

    Article  PubMed  Google Scholar 

  142. Go AS, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  143. Tomonaga M, et al. Clinicopathologic study of progressive subcortical vascular encephalopathy (Binswanger type) in the elderly. J Am Geriatr Soc. 1982;30(8):524–9.

    Article  CAS  PubMed  Google Scholar 

  144. Furuta A, et al. Medullary arteries in aging and dementia. Stroke. 1991;22(4):442–6.

    Article  CAS  PubMed  Google Scholar 

  145. Izzard AS, et al. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23(2):247–50.

    Article  CAS  PubMed  Google Scholar 

  146. De Ciuceis C, et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens. 2007;20(8):846–52.

    Article  PubMed  Google Scholar 

  147. Mulvany MJ. Small artery remodeling and significance in the development of hypertension. News Physiol Sci. 2002;17:105–9.

    PubMed  Google Scholar 

  148. Dorrance AM, et al. A high-potassium diet reduces infarct size and improves vascular structure in hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R415–22.

    Article  CAS  PubMed  Google Scholar 

  149. Rigsby CS, Pollock DM, Dorrance AM. Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats. Microvasc Res. 2007;73(3):198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989;13(6 Pt 2):968–72.

    Article  CAS  PubMed  Google Scholar 

  151. Deutsch C, et al. Diet-induced obesity causes cerebral vessel remodeling and increases the damage caused by ischemic stroke. Microvasc Res. 2009;78(1):100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Osmond JM, et al. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension. 2009;53(2):381–6.

    Article  CAS  PubMed  Google Scholar 

  153. Dorrance AM, Rupp NC, Nogueira EF. Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia. Hypertension. 2006;47(3):590–5.

    Article  CAS  PubMed  Google Scholar 

  154. Osmond JM, Dorrance AM. 11Beta-hydroxysteroid dehydrogenase type II inhibition causes cerebrovascular remodeling and increases infarct size after cerebral ischemia. Endocrinology. 2009;150(2):713–9.

    Article  CAS  PubMed  Google Scholar 

  155. Moreau P, et al. Structure and function of the rat basilar artery during chronic nitric oxide synthase inhibition. Stroke. 1995;26(10):1922–8; discussion 1928–9.

    Article  CAS  PubMed  Google Scholar 

  156. Davidson AO, et al. Blood pressure in genetically hypertensive rats. Influence of the Y chromosome. Hypertension. 1995;26(3):452–9.

    Article  CAS  PubMed  Google Scholar 

  157. Baumbach GL, et al. Mechanics of cerebral arterioles in hypertensive rats. Circ Res. 1988;62(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  158. Pires PW, et al. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;301(1):H87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bohlen HG. The microcirculation in hypertension. J Hypertens Suppl. 1989;7(4):S117–24.

    CAS  PubMed  Google Scholar 

  160. Chan SL, Sweet JG, Cipolla MJ. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J. 2013;27(10):3917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Arribas SM, et al. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow Metab. 1999;19(5):517–27.

    Article  CAS  PubMed  Google Scholar 

  162. Arribas SM, et al. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke. 1996;27(6):1118–22; discussion 1122–3.

    Article  CAS  PubMed  Google Scholar 

  163. Hajdu MA, Heistad DD, Baumbach GL. Effects of antihypertensive therapy on mechanics of cerebral arterioles in rats. Hypertension. 1991;17(3):308–16.

    Article  CAS  PubMed  Google Scholar 

  164. Chillon JM, Baumbach GL. Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arterioles in rats. Hypertension. 1999;33(3):856–61.

    Article  PubMed  Google Scholar 

  165. Clozel JP, Kuhn H, Hefti F. Effects of cilazapril on the cerebral circulation in spontaneously hypertensive rats. Hypertension. 1989;14(6):645–51.

    Article  CAS  PubMed  Google Scholar 

  166. Dupuis F, et al. Comparative effects of the angiotensin II receptor blocker, telmisartan, and the angiotensin-converting enzyme inhibitor, ramipril, on cerebrovascular structure in spontaneously hypertensive rats. J Hypertens. 2005;23(5):1061–6.

    Article  CAS  PubMed  Google Scholar 

  167. Kumai Y, et al. Protective effects of angiotensin II type 1 receptor blocker on cerebral circulation independent of blood pressure. Exp Neurol. 2008;210(2):441–8.

    Article  CAS  PubMed  Google Scholar 

  168. Blumenfeld JD, et al. Beta-adrenergic receptor blockade as a therapeutic approach for suppressing the renin-angiotensin-aldosterone system in normotensive and hypertensive subjects. Am J Hypertens. 1999;12(5):451–9.

    Article  CAS  PubMed  Google Scholar 

  169. Dupuis F, et al. Effects of suboptimal doses of the AT1 receptor blocker, telmisartan, with the angiotensin-converting enzyme inhibitor, ramipril, on cerebral arterioles in spontaneously hypertensive rat. J Hypertens. 2010;28(7):1566–73.

    Article  CAS  PubMed  Google Scholar 

  170. Dupuis F, et al. Captopril improves cerebrovascular structure and function in old hypertensive rats. Br J Pharmacol. 2005;144(3):349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Foulquier S, et al. Differential effects of short-term treatment with two AT1 receptor blockers on diameter of pial arterioles in SHR. PLoS One. 2012;7(9), e42469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Foulquier S, Lartaud I, Dupuis F. Impact of short-term treatment with Telmisartan on cerebral arterial remodeling in SHR. PLoS One. 2014;9(10), e110766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Maeda K, et al. Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1999;19(10):1092–8.

    Article  CAS  PubMed  Google Scholar 

  174. Rigsby CS, et al. Effects of spironolactone on cerebral vessel structure in rats with sustained hypertension. Am J Hypertens. 2011;24(6):708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dorrance AM, et al. Spironolactone reduces cerebral infarct size and EGF-receptor mRNA in stroke-prone rats. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R944–50.

    CAS  PubMed  Google Scholar 

  176. Chrissobolis S, et al. Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J Hypertens. 2014;32(9):1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol. 2003;30(11):860–6.

    Article  CAS  PubMed  Google Scholar 

  178. Queisser N, Fazeli G, Schupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biol Chem. 2010;​391(11):1265–79.

    Article  CAS  PubMed  Google Scholar 

  179. Pires PW, et al. Tempol, a superoxide dismutase mimetic, prevents cerebral vessel remodeling in hypertensive rats. Microvasc Res. 2010;80(3):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62.

    CAS  PubMed  Google Scholar 

  181. Switzer JA, et al. Minocycline prevents IL-6 increase after acute ischemic stroke. Transl Stroke Res. 2012;3(3):363–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Switzer JA, et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011;42(9):2633–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Patel VB, et al. Angiotensin-converting enzyme 2 is a critical determinant of angiotensin II-induced loss of vascular smooth muscle cells and adverse vascular remodeling. Hypertension. 2014;64(1):157–64.

    Article  CAS  PubMed  Google Scholar 

  184. Cipolla MJ, et al. PPAR{gamma} activation prevents hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke. 2010;41(6):1266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ledingham JM, Laverty R. Effects of glitazones on blood pressure and vascular structure in mesenteric resistance arteries and basilar artery from genetically hypertensive rats. Clin Exp Pharmacol Physiol. 2005;32(11):919–25.

    Article  CAS  PubMed  Google Scholar 

  186. Ledingham JM, Laverty R. Effect of simvastatin given alone and in combination with valsartan or enalapril on blood pressure and the structure of mesenteric resistance arteries and the basilar artery in the genetically hypertensive rat model. Clin Exp Pharmacol Physiol. 2005;32(1-2):76–85.

    Article  PubMed  Google Scholar 

  187. Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 2014;126(4):267–74.

    Article  CAS  Google Scholar 

  188. Crowley SD. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid Redox Signal. 2014;20(1):102–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schiffrin EL. The immune system: role in hypertension. Can J Cardiol. 2013;29(5):543–8.

    Article  PubMed  Google Scholar 

  190. Kassan M, et al. CD4+CD25+Foxp3 regulatory T cells and vascular dysfunction in hypertension. J Hypertens. 2013;31(10):1939–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schiffrin EL. Immune modulation of resistance artery remodelling. Basic Clin Pharmacol Toxicol. 2012;110(1):70–2.

    Article  CAS  PubMed  Google Scholar 

  192. Knorr M, Munzel T, Wenzel P. Interplay of NK cells and monocytes in vascular inflammation and myocardial infarction. Front Physiol. 2014;5:295.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Shen JZ, Young MJ. Corticosteroids, heart failure, and hypertension: a role for immune cells? Endocrinology. 2012;153(12):5692–700.

    Article  CAS  PubMed  Google Scholar 

  194. Luft FC, Dechend R, Muller DN. Immune mechanisms in angiotensin II-induced target-organ damage. Ann Med. 2012;44(1):S49–54.

    Article  CAS  PubMed  Google Scholar 

  195. Pires PW, et al. Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion. Microcirculation. 2013;20(7):650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Elmarakby AA, et al. Tumor necrosis factor alpha blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. Hypertension. 2006;47(3):557–62.

    Article  CAS  PubMed  Google Scholar 

  197. Elmarakby AA, et al. TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R76–83.

    Article  CAS  PubMed  Google Scholar 

  198. Pires PW, et al. Tumor necrosis factor-alpha inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats. Am J Physiol Heart Circ Physiol. 2014;307(5):H658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Coulson RJ, et al. Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries. Am J Physiol Heart Circ Physiol. 2002;283(6):H2268–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Dorrance Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dorrance, A.M. (2016). The Effects of Hypertension and Stroke on the Cerebral Vasculature. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29152-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29152-9_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-29150-5

  • Online ISBN: 978-3-319-29152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics