Advertisement

Figures of Merit of Modern Piezo-Active Ceramics and Composites

  • Christopher R. BowenEmail author
  • Vitaly Yu. Topolov
  • Hyunsun Alicia Kim
Chapter
  • 1.3k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 238)

Abstract

In the past decades, various figures of merit have been introduced to characterise the effectiveness of modern functional materials in the context of their piezoelectric and/or pyroelectric properties [1–5].

References

  1. 1.
    Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRefGoogle Scholar
  2. 2.
    Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, New York, pp 3–39CrossRefGoogle Scholar
  3. 3.
    Uchino K, Ishii T (2010) Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400:305–320CrossRefGoogle Scholar
  4. 4.
    Priya S (2010) Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans Ultrason Ferroelectr Freq Control 57:2610–2612CrossRefGoogle Scholar
  5. 5.
    Bowen CR, Taylor J, Le Boulbar E, Zabeka D, Topolov VYu (2015) A modified figure of merit for pyroelectric energy harvesting. Mater Lett 138:243–246CrossRefGoogle Scholar
  6. 6.
    Sessler GM, Hillenbrand J (2013) Figure of merit of piezoelectret transducers for pulse-echo or transmit-receive systems for airborne ultrasound. Appl Phys Lett 103:122904CrossRefGoogle Scholar
  7. 7.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  8. 8.
    Safari A, Akdogan EK (eds) (2008) Piezoelectric and acoustic materials for transducer applications. Springer, New YorkGoogle Scholar
  9. 9.
    Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)Google Scholar
  10. 10.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, HeidelbergCrossRefGoogle Scholar
  11. 11.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Zheludev IS (1971) Physics of crystalline dielectrics, vol 2. Electrical properties. Plenum, New YorkGoogle Scholar
  13. 13.
    Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson M (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York Basel, pp 92–128Google Scholar
  14. 14.
    Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775CrossRefGoogle Scholar
  15. 15.
    Safari A, Akdogan EK (2006) Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331:153–179CrossRefGoogle Scholar
  16. 16.
    Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475CrossRefGoogle Scholar
  17. 17.
    Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283CrossRefGoogle Scholar
  18. 18.
    Peng J, Luo H, He T, Xu H, Lin D (2005) Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. Mater Lett 59:640–643CrossRefGoogle Scholar
  19. 19.
    Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRefGoogle Scholar
  20. 20.
    Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN–PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638CrossRefGoogle Scholar
  21. 21.
    Topolov VYu, Krivoruchko AV (2009) Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity. Smart Mater Struct 18:065011Google Scholar
  22. 22.
    Liu G, Jiang W, Zhu J, Cao W (2011) Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl Phys Lett 99:162901CrossRefGoogle Scholar
  23. 23.
    Kar-Gupta R, Venkatesh TA (2008) Electromechanical response of piezoelectric composites: Effects of geometric connectivity and grain size. Acta Mater 56:3810–3823CrossRefGoogle Scholar
  24. 24.
    Zhang R, Jiang B, Cao W (2003) Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias. Appl Phys Lett 82:787–789CrossRefGoogle Scholar
  25. 25.
    Cao HV, Schmidt H, Zhang R, Cao W, Luo H (2004) Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 single crystal. J Appl Phys 96:549–554CrossRefGoogle Scholar
  26. 26.
    Sessler G (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608CrossRefGoogle Scholar
  27. 27.
    Topolov VYu, Bowen CR, Krivoruchko AV (2013) Role of domain orientations in forming the hydrostatic performance of novel 2–2 single crystal/polymer composites. Ferroelectrics 444:84–89CrossRefGoogle Scholar
  28. 28.
    Grekov AA, Kramarov SO, Kuprienko AA (1987) Anomalous behavior of the two-phase lamellar piezoelectric texture. Ferroelectrics 76:43–48CrossRefGoogle Scholar
  29. 29.
    Topolov VYu, Krivoruchko AV, Bowen CR (2012) Anisotropy of electromechanical properties and hydrostatic response of advanced 2–2-type composites. Phys Status Solidi A 209:1334–1342CrossRefGoogle Scholar
  30. 30.
    Sun E, Cao W, Jiang W, Han P (2011) Complete set of material properties of single domain 0.24Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the orientation effects. Appl Phys Lett 99:032901CrossRefGoogle Scholar
  31. 31.
    Groznov IN (1983) Dielectric permittivity. In: Physics encyclopaedia. Sovetskaya Entsiklopediya, Moscow, pp 178–179 (in Russian)Google Scholar
  32. 32.
    Bowen CR, Topolov VYu (2014) Polarisation orientation effects and hydrostatic parameters in novel 2–2 composites based on PMN-xPT single crystals. Ferroelectrics 466:21–28CrossRefGoogle Scholar
  33. 33.
    Topolov VYu, Filippov SE, Bisegna P (2012) Anisotropy factors and hydrostatic parameters of 1–3-type piezo-active composites with auxetic polymer matrices. Ferroelectrics 432:92–102CrossRefGoogle Scholar
  34. 34.
    Topolov VYu, Panich AE (2009) Problem of piezoelectric sensitivity of 1–3-type composites based on ferroelectric ceramics. Ferroelectrics 392:107–119CrossRefGoogle Scholar
  35. 35.
    Topolov VYu, Turik AV (2001) Porous piezoelectric composites with extremely high reception parameters. Tech Phys 46:1093–1100CrossRefGoogle Scholar
  36. 36.
    Dunn ML, Taya M (1993) Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int J Solids Struct 30:161–175CrossRefzbMATHGoogle Scholar
  37. 37.
    Dunn ML, Taya M (1993) An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc R Soc (Lond), Pt A 443:265–287Google Scholar
  38. 38.
    Dunn ML, Wienecke HA (1997) Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. Int J Solids Struct 34:3571–3582CrossRefzbMATHGoogle Scholar
  39. 39.
    Huang JH, Yu S (1994) Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos Eng 4:1169–1182CrossRefGoogle Scholar
  40. 40.
    Topolov VYu, Bisegna P, Krivoruchko AV (2008) Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J Phys D Appl Phys 41:035406CrossRefGoogle Scholar
  41. 41.
    Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater Chem Phys 97:357–364CrossRefGoogle Scholar
  42. 42.
    Bezus SV, Topolov VYu, Bowen CR (2006) High-performance 1–3-type composites based on (1 – x) Pb(A1/3Nb2/3)O3xPbTiO3 single crystals (A = Mg, Zn). J Phys D Appl Phys 39:1919–1925CrossRefGoogle Scholar
  43. 43.
    Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 single crystals. Ferroelectrics 376:140–152CrossRefGoogle Scholar
  44. 44.
    Topolov VYu, Bowen CR, Bisegna P, Krivoruchko AV (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRefGoogle Scholar
  45. 45.
    Topolov VYu, Bowen CR, Bisegna P (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens Actuators A—Phys 229:94–103CrossRefGoogle Scholar
  46. 46.
    Topolov VYu, Bowen CR, Bisegna P, Panich AE (2015) Effect of the matrix subsystem on hydrostatic parameters of a novel 1–3-type piezo-composite. Funct Mater Lett 8:1550049CrossRefGoogle Scholar
  47. 47.
    Topolov VYu, Bowen CR (2015) High-performance 1–3-type lead-free piezo-composites with auxetic polyethylene matrices. Mater Lett 142:265–268CrossRefGoogle Scholar
  48. 48.
    Bisegna P (2015) Private communicationGoogle Scholar
  49. 49.
    Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191CrossRefGoogle Scholar
  50. 50.
    Xu Y (1991) Ferroelectric Materials and their Applications. North-Holland, AmsterdamGoogle Scholar
  51. 51.
    Topolov VYu, Bowen CR, Filippov SE (2012) High performance of novel 1–3-type composites based on ferroelectric PZT-type ceramics. Ferroelectrics 430:92–97CrossRefGoogle Scholar
  52. 52.
    Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J Appl Phys 111:031301CrossRefGoogle Scholar
  53. 53.
    Topolov VYu, Bowen CR, Isaeva AN (2016) Figures of merit and related parameters of modern piezo-active 1–3-type composites for energy-harvesting applications. In: Parinov IA, Chang S-H, Topolov VYu (eds) Proceedings of the 2015 International conference on Physics, mechanics of new materials and their applications. Nova, New York (in press)Google Scholar
  54. 54.
    Sverdlin GM (1990) Applied Hydroacoustics. Soodostroyeniye, Leningrad (in Russian)Google Scholar
  55. 55.
    Topolov VYu, Filippov SE, Panich AE, Panich EA (2014) Highly anisotropic 1–3–0 composites based on ferroelectric ceramics: microgeometry—volume-fraction relations. Ferroelectrics 460:123–137CrossRefGoogle Scholar
  56. 56.
    Kim M, Kim S-H, Hong S (2013) Materials and devices for MEMS piezoelectric energy harvesting. In: Elvin N, Erturk A (eds) Advances in energy harvesting methods. Springer, New York, pp 417–435CrossRefGoogle Scholar
  57. 57.
    Topolov VYu, Glushanin SV (2002) Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J Phys D Appl Phys 35:2008–2014CrossRefGoogle Scholar
  58. 58.
    Topolov VYu, Panich AE (2008) Electromechanical properties of poled ferroelectric ceramics based on peroskite-family oxides. Issledovano v Rossii, Reg. No. 002, pp 8–26 (in Russian). http://zhurnal.ape.relarn.ru/articles/2008/002.pdfGoogle Scholar
  59. 59.
    Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  60. 60.
    Luchaninov AG (2002) Piezoelectric effect in non-polar heterogeneous ferroelectric materials. Volgograd State Academy of Architecture and Construction, Volgograd (in Russian)Google Scholar
  61. 61.
    Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and Related Phenomena, vol 4., PiezoelectricityGordon and Breach Science Publishers, New York, pp 167–176Google Scholar
  62. 62.
    Glushanin SV, Topolov VYu (2001) Features of electromechanical properties of piezoelectric composites with elements of connectivity 1–1. J Phys D Appl Phys 34:2518–2529CrossRefGoogle Scholar
  63. 63.
    Bowen CR, Topolov VYu (2003) Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater 51:4965–4976CrossRefGoogle Scholar
  64. 64.
    Ren B, Or SW, Wang F, Zhao X, Luo H, Li X, Zhang Q, Di W, Zhang Y (2010) Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 57:1419–1425CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher R. Bowen
    • 1
    Email author
  • Vitaly Yu. Topolov
    • 2
  • Hyunsun Alicia Kim
    • 3
    • 4
  1. 1.Department of Mechanical Engineering, Materials Research CentreUniversity of BathBathUK
  2. 2.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Department of Mechanical EngineeringUniversity of BathBathUK
  4. 4.Structural Engineering DepartmentUniversity of California San DiegoSan DiegoUSA

Personalised recommendations