Advertisement

Electromechanical Coupling Factors and Their Anisotropy in Piezoelectric and Ferroelectric Materials

  • Christopher R. BowenEmail author
  • Vitaly Yu. Topolov
  • Hyunsun Alicia Kim
Chapter
  • 1.3k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 238)

Abstract

The ECF characterises the conversion of electrical energy into the mechanical form and the conversion of mechanical energy into the electric form (see work [1, 2] and Sect.  1.2). A system of the ECFs (see, for example, ( 1.21)–( 1.27) for poled FCs) is introduced to describe the conversion and takes into account the symmetry of a piezoelectric material, orientations of its crystallographic axes, input and output arrangements, etc.

Keywords

Electromechanical Coupling Elastic Anisotropy Piezoelectric Coefficient Anisotropy Factor Electromechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Zheludev IS (1971) Physics of crystalline dielectrics. In: Electrical properties, vol. 2. Plenum, New YorkGoogle Scholar
  3. 3.
    Berlincourt DA, Cerran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed) Physical acoustics. Principles and methods. Methods and devices, vol 1. Academic Press, New York, pp 169–270Google Scholar
  4. 4.
    Blistanov AA, Bondarenko VS, Perelomova NV, Strizhevskaya FN, Chkalova VV, Shaskol’skaya MP (1982) Acoustic crystals (Handbook). Nauka, Moscow (in Russian)Google Scholar
  5. 5.
    Xu Y (1991) Ferroelectric materials and their applications. North-Holland, AmsterdamGoogle Scholar
  6. 6.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, HeidelbergCrossRefGoogle Scholar
  7. 7.
    Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)Google Scholar
  8. 8.
    Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Sov Phys Solid State 12:688–693Google Scholar
  9. 9.
    Aleshin VI (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zh Tekh Fiz 60:179–183 (in Russian)Google Scholar
  10. 10.
    Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811CrossRefGoogle Scholar
  11. 11.
    Dammak H, Renault A-É, Gaucher P, Thi MP, Calvarin G (2003) Origin of the giant piezoelectric properties in the [001] domain engineered relaxor single crystals. Jpn J Appl Phys 1(42):6477–6482CrossRefGoogle Scholar
  12. 12.
    Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475CrossRefGoogle Scholar
  13. 13.
    Zhang R, Jiang W, Jiang B, Cao W (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. In: Cohen RE (ed) Fundamental physics of ferroelectrics. American Institute of Physics, Melville, pp 188–197Google Scholar
  14. 14.
    Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)Google Scholar
  15. 15.
    Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. In: Physics of ferroelectric ceramics, vol 1. Radiotekhnika, Moscow (in Russian)Google Scholar
  16. 16.
    Kelly J, Leonard M, Tantigate C, Safari A (1997) Effect of composition on the electromechanical properties of (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 ceramics. J Am Ceram Soc 80:957–964CrossRefGoogle Scholar
  17. 17.
    Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson LM (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, Basel, pp 92–128Google Scholar
  18. 18.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  19. 19.
    Topolov VYu, Bowen CR (2015) High-performance 1–3-type lead-free piezo-composites with auxetic polyethylene matrices. Mater Lett 142:265–268CrossRefGoogle Scholar
  20. 20.
    Zheng L, Huo X, Wang R, Wang J, Jiang W, Cao W (2013) Large size lead-free (Na, K)(Nb, Ta)O3 piezoelectric single crystal: growth and full tensor properties. CrystEngComm 15:7718–7722CrossRefGoogle Scholar
  21. 21.
    Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W (2014) A high quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry. CrystEngComm 16:9828–9833CrossRefGoogle Scholar
  22. 22.
    Evans KE, Alderson KL (1992) The static and dynamic moduli of auxetic microporous polyethylene. J Mater Sci Lett 11:1721–1724CrossRefGoogle Scholar
  23. 23.
    Groznov IN (1983) Dielectric permittivity. In: Physics encyclopaedia. Sovetskaya Entsiklopediya, Moscow, pp 178–179 (in Russian)Google Scholar
  24. 24.
    Smotrakov VG, Eremkin VV, Alyoshin VA, Tsikhotsky ES (2000) Preparation and study of single-crystal–ceramic composite. Izv Akad Nauk, Ser Fiz 64:1220–1223 (in Russian)Google Scholar
  25. 25.
    Topolov VYu, Glushanin SV (2002) Effective electromechanical properties of ferroelectric piezoactive composites of the crystal–ceramic type based on (Pb1–xCax)TiO3. Tech Phys Lett 28:279–282CrossRefGoogle Scholar
  26. 26.
    Glushanin SV, Topolov VYu, Turik AV (2003) Prediction of piezoelectric properties of crystal-ceramic composites. Crystallogr Rep 48:491–499CrossRefGoogle Scholar
  27. 27.
    Takahashi H, Tukamoto S, Qiu J, Tani J, Sukigara T (2003) Property of composite ceramics composed of single crystals and ceramic matrix using hybrid sintering. Jpn J Appl Phys 1(42):6055–6058CrossRefGoogle Scholar
  28. 28.
    Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRefGoogle Scholar
  29. 29.
    Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena, vol 4., PiezoelectricityGordon and Breach Science Publishers, New York, pp 167–176Google Scholar
  30. 30.
    Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 44:e621–e626CrossRefGoogle Scholar
  31. 31.
    Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13:1038–1048CrossRefGoogle Scholar
  33. 33.
    Topolov VYu, Filippov SE, Panich AE, Panich EA (2014) Highly anisotropic 1–3–0 composites based on ferroelectric ceramics: microgeometry—volume-fraction relations. Ferroelectrics 460:123–137CrossRefGoogle Scholar
  34. 34.
    Asakawa K, Hiraoka T, Akasaka Y, Hotta Y (2003) Method for manufacturing porous structure and method for forming pattern. US Patent 6,565,763Google Scholar
  35. 35.
    Clark P, Moya W, (2003) Three dimensional patterned porous structures. US Patent 6,627,291Google Scholar
  36. 36.
    Ritter T, Geng X, Shung KK, Lopath PD, Park S-E, Shrout TR (2000) Single crystal PZN/PT—polymer composites for ultrasound transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 47:792–800CrossRefGoogle Scholar
  37. 37.
    Cheng KC, Chan HLW, Choy CL, Yin Q, Luo H, Yin Z (2003) Single crystal PMN–0.33PT/epoxy 1–3 composites for ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 50:1177–1183CrossRefGoogle Scholar
  38. 38.
    Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN–PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638CrossRefGoogle Scholar
  39. 39.
    Wang F, He C, Tang Y, Zhao X, Luo H (2007) Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRefGoogle Scholar
  40. 40.
    Cao H, Hugo Schmidt V, Zhang R, Cao W, Luo H (2003) Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 single crystal. J Appl Phys 96:549–554CrossRefGoogle Scholar
  41. 41.
    Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol 71:1082–1088CrossRefGoogle Scholar
  42. 42.
    Choy SH, Chan HLW, Ng MW, Liu PCK (2004) Study of 1–3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integr Ferroelectr 63:109–115CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher R. Bowen
    • 1
    Email author
  • Vitaly Yu. Topolov
    • 2
  • Hyunsun Alicia Kim
    • 3
    • 4
  1. 1.Department of Mechanical Engineering, Materials Research CentreUniversity of BathBathUK
  2. 2.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Department of Mechanical EngineeringUniversity of BathBathUK
  4. 4.Structural Engineering DepartmentUniversity of California San DiegoSan DiegoUSA

Personalised recommendations