Advertisement

The Piezoelectric Medium and Its Characteristics

  • Christopher R. BowenEmail author
  • Vitaly Yu. Topolov
  • Hyunsun Alicia Kim
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 238)

Abstract

An effect that links a mechanical action (mechanical stress or strain) with an electrical response (electric field, electric displacement or polarisation) is the piezoelectric effect or, more exactly, the direct piezoelectric effect . This effect was first studied by brothers P. Curie and J. Curie in experimental work (1880) on the behaviour of quartz single crystals (SCs) subjected to an external mechanical stress.

Keywords

Piezoelectric Material Piezoelectric Effect Morphotropic Phase Boundary Piezoelectric Coefficient Piezoelectric Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Levanyuk AP, Sannikov DG (1994) Piezoelectrics. In: Prokhorov AM (ed) Physics encyclopaedia. Bolshaya Rossiyskaya Entsiklopedia, vol 4. Moscow (in Russian), pp 188–189Google Scholar
  2. 2.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Zheludev IS (1971) Physics of crystalline dielectrics. Electrical properties, vol. 2. Plenum, New YorkGoogle Scholar
  4. 4.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, BostonGoogle Scholar
  5. 5.
    Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  6. 6.
    Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Soviet Phys—Solid State 12:688–693Google Scholar
  7. 7.
    Aleshin VI (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zh Tekh Fiz 60:179–183 (in Russian)Google Scholar
  8. 8.
    Topolov VYu (2003) Domain wall displacements and piezoelectric activity of KNbO3 single crystals. J Phys: Condens Matter 15:561–565Google Scholar
  9. 9.
    Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. Physics of ferroelectric ceramics, vol. 1. Radiotekhnika, Moscow (in Russian)Google Scholar
  10. 10.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  11. 11.
    Siffert P (2008) Foreword. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, p VGoogle Scholar
  12. 12.
    Newnham RE (2005) Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, New YorkGoogle Scholar
  13. 13.
    Berlincourt DA, Cerran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed) Physical acoustics. Principles and methods. Methods and devices. vol 1, Pt A. Academic Press, New York, pp 169–270Google Scholar
  14. 14.
    Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, New York, pp 3–39CrossRefGoogle Scholar
  15. 15.
    Ayed SB, Abdelkefi A, Najar F, Hajj MR (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25:174–186CrossRefGoogle Scholar
  16. 16.
    Tang G, Yang B, Liu J-Q, Xu B, Zhu H-Y, Yang C-S (2014) Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensors Actuators A 205:150–155CrossRefGoogle Scholar
  17. 17.
    Chae M-S, Koh J-H (2014) Piezoelectric behavior of (1 – x)(PbMgNbO3–PbZrTiO3) – x(BaTiO3) ceramics for energy harvester applications. Ceram Int 40:2551–2555Google Scholar
  18. 18.
    Maiwa H, Sakamoto W (2013) Vibrational energy harvesting using a unimorph with PZT- or BT-based ceramics. Ferroelectrics 446:67–77CrossRefGoogle Scholar
  19. 19.
    Uchino K, Ishii T (2010) Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400:305–320CrossRefGoogle Scholar
  20. 20.
    Yoon M-S, Mahmud I, Ur S-C (2013) Phase-formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb(Zr0.53Ti0.47)O3 for piezoelectric energy harvesting devices. Ceram Int 39:8581–8588CrossRefGoogle Scholar
  21. 21.
    Gusarova E, Gusarov B, Zakharov D, Bousquet M, Viala B, Cugat O, Delamare J, Gimeno L (2013) An improved method for piezoelectric characterization of polymers for energy harvesting applications. J Phys: Conf Ser 476:012061Google Scholar
  22. 22.
    Yan Y, Cho K-H, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013) Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3 − PbZrO3 − PbTiO3 piezoelectric ceramics. Appl Phys Lett 102:042903CrossRefGoogle Scholar
  23. 23.
    Islam RA, Priya S (2006) Realization of high-energy density polycrystalline piezoelectric ceramics. Appl Phys Lett 88:032903CrossRefGoogle Scholar
  24. 24.
    Priya S (2010) Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans Ultrason Ferroelectr Freq Control 57:2610–2612CrossRefGoogle Scholar
  25. 25.
    Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRefGoogle Scholar
  26. 26.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin HeidelbergGoogle Scholar
  27. 27.
    Cross LE (2008) Relaxor ferroelectrics. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, pp 131–156Google Scholar
  28. 28.
    Park S-E, Hackenberger W (2002) High performance single crystal piezoelectrics: applications and issues. Curr Opin Solid State Mater Sci 6:11–18CrossRefGoogle Scholar
  29. 29.
    Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of ferroelectric phenomena. Nauka, Leningrad (in Russian)Google Scholar
  30. 30.
    Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mater Sci 6:27–34CrossRefGoogle Scholar
  31. 31.
    Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811CrossRefGoogle Scholar
  32. 32.
    Park S-E, Shrout TR (1997) Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater Res Innovations 1:20–25CrossRefGoogle Scholar
  33. 33.
    Topolov VYu (2012) Heterogeneous ferroelectric solid solutions. Phases and Domain States. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Dammak H, Renault A-É, Gaucher P, Thi MP, Calvarin G (2003) Origin of the giant piezoelectric properties in the [001] domain engineered relaxor single crystals. Japan J Appl Phys 1(42):6477–6482CrossRefGoogle Scholar
  35. 35.
    Topolov VYu, Turik AV (2002) An intermediate monoclinic phase and electromechanical interactions in xPbTiO3 – (1 – x)Pb(Zn1/3Nb2/3)O3 crystals. Phys Solid State 44:1355–1362CrossRefGoogle Scholar
  36. 36.
    Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283CrossRefGoogle Scholar
  37. 37.
    Davis M (2007) Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J Electroceram 19:23–45CrossRefGoogle Scholar
  38. 38.
    Noheda B, Cox DE, Shirane G, Park S-E, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92 %PbZn1/3Nb2/3O3-8 %PbTiO3. Phys Rev Lett 86:3891–3894CrossRefGoogle Scholar
  39. 39.
    Wada S, Tsurumi T (2002) Domain switching properties in PZN–PT single crystals with engineered domain configurations. Key Eng Mater 214–215:9–14CrossRefGoogle Scholar
  40. 40.
    Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)Google Scholar
  41. 41.
    Liu T, Lynch CS (2003) Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling. Acta Mater 51:407–416CrossRefGoogle Scholar
  42. 42.
    Hong YK, Moon KS (2005) Single crystal piezoelectric transducers to harvest vibration energy. Proc SPIE Optomechatronic Actuators Manipulation 6048:60480ECrossRefGoogle Scholar
  43. 43.
    Sun C, Qin L, Li F, Wang Q-M (2009) Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN-PT) device. J Intell Mater Syst Struct 20:559–568Google Scholar
  44. 44.
    Moon SE, LeeSQ Lee S-K, Lee Y-G, Yang YS, Park K-H, Kim J (2009) Sustainable vibration energy harvesting based on Zr-doped PMN-PT piezoelectric single crystal cantilevers. ETRI J 31:688–694CrossRefGoogle Scholar
  45. 45.
    Song HJ, Choi YT, Wang G, Wereley NM (2009) Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer. J Mech Des 131:091008CrossRefGoogle Scholar
  46. 46.
    Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN-PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638CrossRefGoogle Scholar
  47. 47.
    Turik AV, Topolov VYu, Aleshin VI (2000) On a correlation between remanent polarization and piezoelectric coefficients of perovskite-type ferroelectric ceramics. J Phys D Appl Phys 33:738–743CrossRefGoogle Scholar
  48. 48.
    Turik AV, Chernobabov AI (1977) On an orientation contribution in dielectric, piezoelectric and elastic constants of ferroelectric ceramics. Zh Tekh Fiz 47:1944–1948 (in Russian)Google Scholar
  49. 49.
    Aleshin VI (1991) Spherical inclusion in an anisotropic piezo-active medium. Kristallografiya 36:1352–1357 (in Russian)Google Scholar
  50. 50.
    Aleshin VI (1987) Properties of textures being formed on the basis of non-180° reorientations. Kristallografiya 32:422–426 (in Russian)Google Scholar
  51. 51.
    Bondarenko EI, Topolov VYu, Turik AV (1990) The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ceramics. Ferroelectrics 110:53–56CrossRefGoogle Scholar
  52. 52.
    Bondarenko EI, Topolov VYu, Turik AV (1991) The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr Lett Sect 13:13–19CrossRefGoogle Scholar
  53. 53.
    Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI (1993) The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140:175–181CrossRefGoogle Scholar
  54. 54.
    Turik AV, Topolov VYu (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D Appl Phys 30:1541–1549CrossRefGoogle Scholar
  55. 55.
    Ruschmeyer K, Helke G, Koch J, Lubitz K, Möckl T, Petersen A, Riedel M, Schönecker A (1995) Piezokeramik: Grundlagen, Werkstoffe, Applikationen. Expert-Verlag, Renningen-MalmsheimGoogle Scholar
  56. 56.
    Algueró M, Alemany C, Pardo L, González AM (2004) Method for obtaining the full set of linear electric, mechanical and electromechanical coefficients and all related losses of a piezoelectric ceramic. J Am Ceram Soc 87:209–215CrossRefGoogle Scholar
  57. 57.
    Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)Google Scholar
  58. 58.
    Haertling G (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRefGoogle Scholar
  59. 59.
    Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475CrossRefGoogle Scholar
  60. 60.
    Zhang R, Jiang W, Jiang B, Cao W (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. In: Cohen RE (ed) Fundamental physics of ferroelectrics. Melville, American Institute of Physics, pp 188–197Google Scholar
  61. 61.
    Liu G, Jiang W, Zhu J, Cao W (2011) Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl Phys Lett 99:162901–162903CrossRefGoogle Scholar
  62. 62.
    Yin J, Jiang B, Cao W (2000) Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 47:285–291Google Scholar
  63. 63.
    Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J Mater Sci Lett 21:1877–1879Google Scholar
  64. 64.
    Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRefGoogle Scholar
  65. 65.
    Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson LM (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York, pp 92–128Google Scholar
  66. 66.
    Topolov VYu, Glushanin SV (2002) Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J Phys D Appl Phys 35:2008–2014CrossRefGoogle Scholar
  67. 67.
    Swallow LM, Luo JK, Siores E, Patel I, Dodds D (2008) A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct 17:025017CrossRefGoogle Scholar
  68. 68.
    Qi Y, McAlpine MC (2010) Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci 3:1275–1285CrossRefGoogle Scholar
  69. 69.
    Guyomar D, Lallart M (2011) Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2:274–294CrossRefGoogle Scholar
  70. 70.
    Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350CrossRefGoogle Scholar
  71. 71.
    Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898CrossRefGoogle Scholar
  72. 72.
    Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706CrossRefGoogle Scholar
  73. 73.
    Levassort F, Lethiecq M, Millar C, Pourcelot L (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans Ultrason Ferroelectr Freq Control 45:1497–1505CrossRefGoogle Scholar
  74. 74.
    Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans Ultrason Ferroelectr Freq Control 44:445–452CrossRefGoogle Scholar
  75. 75.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  76. 76.
    Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRefGoogle Scholar
  77. 77.
    Xu Y (1991) Ferroelectric materials and their applications. North-Holland, AmsterdamGoogle Scholar
  78. 78.
    Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena, vol 4. Piezoelectricity. Gordon and Breach Science Publishers, New York, pp 167–176Google Scholar
  79. 79.
    Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 441(Suppl. 1):e621–e626CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher R. Bowen
    • 1
    Email author
  • Vitaly Yu. Topolov
    • 2
  • Hyunsun Alicia Kim
    • 3
    • 4
  1. 1.Department of Mechanical Engineering, Materials Research CentreUniversity of BathBathUK
  2. 2.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Department of Mechanical EngineeringUniversity of BathBathUK
  4. 4.Structural Engineering DepartmentUniversity of California San DiegoSan DiegoUSA

Personalised recommendations