Skip to main content

The Piezoelectric Medium and Its Characteristics

  • Chapter
  • First Online:
Modern Piezoelectric Energy-Harvesting Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 238))

Abstract

An effect that links a mechanical action (mechanical stress or strain) with an electrical response (electric field, electric displacement or polarisation) is the piezoelectric effect or, more exactly, the direct piezoelectric effect . This effect was first studied by brothers P. Curie and J. Curie in experimental work (1880) on the behaviour of quartz single crystals (SCs) subjected to an external mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereafter we use asterisk (*) to denote the effective properties and related parameters of the composite.

References

  1. Levanyuk AP, Sannikov DG (1994) Piezoelectrics. In: Prokhorov AM (ed) Physics encyclopaedia. Bolshaya Rossiyskaya Entsiklopedia, vol 4. Moscow (in Russian), pp 188–189

    Google Scholar 

  2. Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford

    Google Scholar 

  3. Zheludev IS (1971) Physics of crystalline dielectrics. Electrical properties, vol. 2. Plenum, New York

    Google Scholar 

  4. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, Boston

    Google Scholar 

  5. Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  6. Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Soviet Phys—Solid State 12:688–693

    Google Scholar 

  7. Aleshin VI (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zh Tekh Fiz 60:179–183 (in Russian)

    Google Scholar 

  8. Topolov VYu (2003) Domain wall displacements and piezoelectric activity of KNbO3 single crystals. J Phys: Condens Matter 15:561–565

    Google Scholar 

  9. Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. Physics of ferroelectric ceramics, vol. 1. Radiotekhnika, Moscow (in Russian)

    Google Scholar 

  10. Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  11. Siffert P (2008) Foreword. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, p V

    Google Scholar 

  12. Newnham RE (2005) Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, New York

    Google Scholar 

  13. Berlincourt DA, Cerran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed) Physical acoustics. Principles and methods. Methods and devices. vol 1, Pt A. Academic Press, New York, pp 169–270

    Google Scholar 

  14. Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, New York, pp 3–39

    Chapter  Google Scholar 

  15. Ayed SB, Abdelkefi A, Najar F, Hajj MR (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25:174–186

    Article  Google Scholar 

  16. Tang G, Yang B, Liu J-Q, Xu B, Zhu H-Y, Yang C-S (2014) Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensors Actuators A 205:150–155

    Article  Google Scholar 

  17. Chae M-S, Koh J-H (2014) Piezoelectric behavior of (1 – x)(PbMgNbO3–PbZrTiO3) – x(BaTiO3) ceramics for energy harvester applications. Ceram Int 40:2551–2555

    Google Scholar 

  18. Maiwa H, Sakamoto W (2013) Vibrational energy harvesting using a unimorph with PZT- or BT-based ceramics. Ferroelectrics 446:67–77

    Article  Google Scholar 

  19. Uchino K, Ishii T (2010) Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400:305–320

    Article  Google Scholar 

  20. Yoon M-S, Mahmud I, Ur S-C (2013) Phase-formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb(Zr0.53Ti0.47)O3 for piezoelectric energy harvesting devices. Ceram Int 39:8581–8588

    Article  Google Scholar 

  21. Gusarova E, Gusarov B, Zakharov D, Bousquet M, Viala B, Cugat O, Delamare J, Gimeno L (2013) An improved method for piezoelectric characterization of polymers for energy harvesting applications. J Phys: Conf Ser 476:012061

    Google Scholar 

  22. Yan Y, Cho K-H, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013) Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3 − PbZrO3 − PbTiO3 piezoelectric ceramics. Appl Phys Lett 102:042903

    Article  Google Scholar 

  23. Islam RA, Priya S (2006) Realization of high-energy density polycrystalline piezoelectric ceramics. Appl Phys Lett 88:032903

    Article  Google Scholar 

  24. Priya S (2010) Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans Ultrason Ferroelectr Freq Control 57:2610–2612

    Article  Google Scholar 

  25. Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61

    Article  Google Scholar 

  26. Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin Heidelberg

    Google Scholar 

  27. Cross LE (2008) Relaxor ferroelectrics. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, pp 131–156

    Google Scholar 

  28. Park S-E, Hackenberger W (2002) High performance single crystal piezoelectrics: applications and issues. Curr Opin Solid State Mater Sci 6:11–18

    Article  Google Scholar 

  29. Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of ferroelectric phenomena. Nauka, Leningrad (in Russian)

    Google Scholar 

  30. Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mater Sci 6:27–34

    Article  Google Scholar 

  31. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  Google Scholar 

  32. Park S-E, Shrout TR (1997) Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater Res Innovations 1:20–25

    Article  Google Scholar 

  33. Topolov VYu (2012) Heterogeneous ferroelectric solid solutions. Phases and Domain States. Springer, Berlin

    Book  Google Scholar 

  34. Dammak H, Renault A-É, Gaucher P, Thi MP, Calvarin G (2003) Origin of the giant piezoelectric properties in the [001] domain engineered relaxor single crystals. Japan J Appl Phys 1(42):6477–6482

    Article  Google Scholar 

  35. Topolov VYu, Turik AV (2002) An intermediate monoclinic phase and electromechanical interactions in xPbTiO3 – (1 – x)Pb(Zn1/3Nb2/3)O3 crystals. Phys Solid State 44:1355–1362

    Article  Google Scholar 

  36. Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283

    Article  Google Scholar 

  37. Davis M (2007) Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J Electroceram 19:23–45

    Article  Google Scholar 

  38. Noheda B, Cox DE, Shirane G, Park S-E, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92 %PbZn1/3Nb2/3O3-8 %PbTiO3. Phys Rev Lett 86:3891–3894

    Article  Google Scholar 

  39. Wada S, Tsurumi T (2002) Domain switching properties in PZN–PT single crystals with engineered domain configurations. Key Eng Mater 214–215:9–14

    Article  Google Scholar 

  40. Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)

    Google Scholar 

  41. Liu T, Lynch CS (2003) Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling. Acta Mater 51:407–416

    Article  Google Scholar 

  42. Hong YK, Moon KS (2005) Single crystal piezoelectric transducers to harvest vibration energy. Proc SPIE Optomechatronic Actuators Manipulation 6048:60480E

    Article  Google Scholar 

  43. Sun C, Qin L, Li F, Wang Q-M (2009) Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN-PT) device. J Intell Mater Syst Struct 20:559–568

    Google Scholar 

  44. Moon SE, LeeSQ Lee S-K, Lee Y-G, Yang YS, Park K-H, Kim J (2009) Sustainable vibration energy harvesting based on Zr-doped PMN-PT piezoelectric single crystal cantilevers. ETRI J 31:688–694

    Article  Google Scholar 

  45. Song HJ, Choi YT, Wang G, Wereley NM (2009) Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer. J Mech Des 131:091008

    Article  Google Scholar 

  46. Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN-PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638

    Article  Google Scholar 

  47. Turik AV, Topolov VYu, Aleshin VI (2000) On a correlation between remanent polarization and piezoelectric coefficients of perovskite-type ferroelectric ceramics. J Phys D Appl Phys 33:738–743

    Article  Google Scholar 

  48. Turik AV, Chernobabov AI (1977) On an orientation contribution in dielectric, piezoelectric and elastic constants of ferroelectric ceramics. Zh Tekh Fiz 47:1944–1948 (in Russian)

    Google Scholar 

  49. Aleshin VI (1991) Spherical inclusion in an anisotropic piezo-active medium. Kristallografiya 36:1352–1357 (in Russian)

    Google Scholar 

  50. Aleshin VI (1987) Properties of textures being formed on the basis of non-180° reorientations. Kristallografiya 32:422–426 (in Russian)

    Google Scholar 

  51. Bondarenko EI, Topolov VYu, Turik AV (1990) The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ceramics. Ferroelectrics 110:53–56

    Article  Google Scholar 

  52. Bondarenko EI, Topolov VYu, Turik AV (1991) The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr Lett Sect 13:13–19

    Article  Google Scholar 

  53. Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI (1993) The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140:175–181

    Article  Google Scholar 

  54. Turik AV, Topolov VYu (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D Appl Phys 30:1541–1549

    Article  Google Scholar 

  55. Ruschmeyer K, Helke G, Koch J, Lubitz K, Möckl T, Petersen A, Riedel M, Schönecker A (1995) Piezokeramik: Grundlagen, Werkstoffe, Applikationen. Expert-Verlag, Renningen-Malmsheim

    Google Scholar 

  56. Algueró M, Alemany C, Pardo L, González AM (2004) Method for obtaining the full set of linear electric, mechanical and electromechanical coefficients and all related losses of a piezoelectric ceramic. J Am Ceram Soc 87:209–215

    Article  Google Scholar 

  57. Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)

    Google Scholar 

  58. Haertling G (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  59. Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475

    Article  Google Scholar 

  60. Zhang R, Jiang W, Jiang B, Cao W (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. In: Cohen RE (ed) Fundamental physics of ferroelectrics. Melville, American Institute of Physics, pp 188–197

    Google Scholar 

  61. Liu G, Jiang W, Zhu J, Cao W (2011) Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl Phys Lett 99:162901–162903

    Article  Google Scholar 

  62. Yin J, Jiang B, Cao W (2000) Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 47:285–291

    Google Scholar 

  63. Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J Mater Sci Lett 21:1877–1879

    Google Scholar 

  64. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536

    Article  Google Scholar 

  65. Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson LM (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York, pp 92–128

    Google Scholar 

  66. Topolov VYu, Glushanin SV (2002) Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J Phys D Appl Phys 35:2008–2014

    Article  Google Scholar 

  67. Swallow LM, Luo JK, Siores E, Patel I, Dodds D (2008) A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct 17:025017

    Article  Google Scholar 

  68. Qi Y, McAlpine MC (2010) Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci 3:1275–1285

    Article  Google Scholar 

  69. Guyomar D, Lallart M (2011) Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2:274–294

    Article  Google Scholar 

  70. Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350

    Article  Google Scholar 

  71. Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898

    Article  Google Scholar 

  72. Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706

    Article  Google Scholar 

  73. Levassort F, Lethiecq M, Millar C, Pourcelot L (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans Ultrason Ferroelectr Freq Control 45:1497–1505

    Article  Google Scholar 

  74. Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans Ultrason Ferroelectr Freq Control 44:445–452

    Article  Google Scholar 

  75. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  76. Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066

    Article  Google Scholar 

  77. Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam

    Google Scholar 

  78. Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena, vol 4. Piezoelectricity. Gordon and Breach Science Publishers, New York, pp 167–176

    Google Scholar 

  79. Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 441(Suppl. 1):e621–e626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Bowen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowen, C.R., Topolov, V.Y., Kim, H.A. (2016). The Piezoelectric Medium and Its Characteristics. In: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-29143-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29143-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29141-3

  • Online ISBN: 978-3-319-29143-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics