Skip to main content

Microfungi in Indoor Environments: What Is Known and What Is Not

  • Chapter
Biology of Microfungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Most indoor fungi belong to the microfungi. The latest advancements in research on indoor microfungi are reviewed in this chapter. It emphasizes the systematic development, fungal fragments, health effects, MVOCs, natural disasters, domestic mites, and new technologies used in research regarding indoor fungi. These areas are not well covered by reviewed literature. In each area, we discuss the directions, areas, or knowledge gaps which need to be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Nasr MB, Zohri A-NA, Amer EM (2014) Indoor surveillance of airborne fungi contaminating intensive care units and operation rooms in Assiut University Hospitals, Egypt. J Health Sci 2:20–27

    Google Scholar 

  • Adams RI, Amend AS, Taylor JW, Bruns TD (2013a) A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: a case study of fungi in indoor dust. Microb Ecol 66(4):735–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams RI, Miletto M, Taylor JW, Bruns TD (2013b) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7(7):1262–1273. doi:10.1038/ismej.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RI, Miletto M, Taylor JW, Bruns TD (2013c) The diversity and distribution of fungi on residential surfaces. PLoS One 8(11), e78866. doi:10.1371/journal.pone.0078866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari A, Reponen T, Rylander R (2013) Airborne fungal cell fragments in homes in relation to total fungal biomass. Indoor Air 23(2):142–147

    Article  CAS  PubMed  Google Scholar 

  • Al-Ahmad M, Manno M, Ng V, Ribeiro M, Liss G, Tarlo S (2010) Symptoms after mould exposure including Stachybotrys chartarum, and comparison with darkroom disease. Allergy 65(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci 107(31):13748–13753. doi:10.1073/pnas.1000454107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94(3):392–403

    Article  CAS  PubMed  Google Scholar 

  • Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77(12):4180–4188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakerspigel A, Kane J, Schaus D (1986) Isolation of Blastomyces dermatitidis from an earthen floor in southwestern Ontario, Canada. J Clin Microbiol 24(5):890–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeau DN, Grimsley LF, White LE, El-Dahr JM, Lichtveld M (2010) Mold exposure and health effects following hurricanes Katrina and Rita. Annu Rev Public Health 31:165–178

    Article  PubMed  Google Scholar 

  • Barnes PD, Marr KA (2006) Aspergillosis: spectrum of disease, diagnosis, and treatment. Infect Dis Clin North Am 20(3):545–561

    Article  PubMed  Google Scholar 

  • Barnes C, Buckley S, Pacheco F, Portnoy J (2002) IgE-reactive proteins from Stachybotrys chartarum. Ann Allergy Asthma Immunol 89(1):29–33

    Article  PubMed  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Canadian Biological Publications Ltd, Canada

    Google Scholar 

  • Behbod B, Sordillo J, Hoffman E, Datta S, Muilenberg M, Scott J, Chew G, Platts‐Mills T, Schwartz J, Burge H (2013) Wheeze in infancy: protection associated with yeasts in house dust contrasts with increased risk associated with yeasts in indoor air and other fungal taxa. Allergy 68(11):1410–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW (2010) An overview of the genus Aspergillus. In: Machida M, Gomi K (eds) Aspergillus molecular biology and genomics. Caiser Academic Press, Portland, OR, pp 1–17

    Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin H-D, Dugan FM, Schroers H-J, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67(1):1–94. doi:10.3114/sim.2010.67.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betancourt DA, Krebs K, Moore SA, Martin SM (2013) Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile. BMC Microbiol 13(1):283. doi:10.1186/1471-2180-13-283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhan U, Newstead MJ, Zeng X, Ballinger MN, Standiford LR, Standiford TJ (2011) Stachybotrys chartarum-induced hypersensitivity pneumonitis is TLR9 dependent. Am J Pathol 179(6):2779–2787. doi:10.1016/j.ajpath.2011.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingley GD, Verran J, Munro LJ, Banks CE (2012) Identification of microbial volatile organic compounds (MVOCs) emitted from fungal isolates found on cinematographic film. Anal Methods 4(5):1265–1271

    Article  CAS  Google Scholar 

  • Bissett J (1987) Fungi associated with urea-formaldehyde foam insulation in Canada. Mycopathologia 99(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Bjurman J (1994) Ergosterol as an indicator of mould growth on wood in relation to culture age, humidity stress and nutrient level. Int Biodeter Biodegr 33(4):355–368

    Article  CAS  Google Scholar 

  • Brewer JH, Thrasher JD, Straus DC, Madison RA, Hooper D (2013) Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins 5(4):605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho-Rivera M, Kawachi I, Bennett GG, Subramanian S (2014) Associations of neighborhood concentrated poverty, neighborhood racial/ethnic composition, and indoor allergen exposures: a cross-sectional analysis of Los Angeles households, 2006–2008. J Urban Health 91(4):1–16

    Article  Google Scholar 

  • Carey SA, Plopper CG, Hyde DM, Islam Z, Pestka JJ, Harkema JR (2012) Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys. Toxicol Pathol 40(6):887–898

    Article  PubMed  Google Scholar 

  • Casadevall A, L-A P (2013) Exserohilum rostratum fungal meningitis associated with methylprednisolone injections. Future Microbiol 8(2):135–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CDC (2002) Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy—United States, July–November 2002. MMWR Morb Mortal Wkly Rep 51(49):1109

    Google Scholar 

  • CDC (2003) Guidelines for environmental infection control in health-care facilities. Centers for Disease Control and Prevention (CDC), Atlanta, GA. http://www.cdc.gov/hicpac/pdf/guidelines/eic_in_HCF_03.pdf

  • CDC (2013) Multistate outbreak of fungal meningitis and other infections. Centers for Disease Control Prevention

    Google Scholar 

  • Ceylan E, Doruk S, Genc S, Ozkutuk AA, Karadag F, Ergor G, Itil BO, Cımrın AH (2013) The role of molds in the relation between indoor environment and atopy in asthma patients. J Res Med Sci 18(12):1067

    PubMed  PubMed Central  Google Scholar 

  • Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY, Jacobson LM, Crowell CS, Sneed RS, Lewis FM (2006) Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296(8):953–963

    Article  CAS  PubMed  Google Scholar 

  • Chazalet V, Debeaupuis J-P, Sarfati J, Lortholary J, Ribaud P, Shah P, Cornet M, Thien HV, Gluckman E, Brücker G (1998) Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J Clin Microbiol 36(6):1494–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Hsin Y, Lin W-T (2014) Effects of mold growth on building materials by different environments in Taiwan. KSCE J Civ Eng 18(4):1083–1090

    Article  Google Scholar 

  • Chew G, Rogers C, Burge H, Muilenberg M, Gold D (2003) Dustborne and airborne fungal propagules represent a different spectrum of fungi with differing relations to home characteristics. Allergy 58(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Chiller TM, Roy M, Nguyen D, Guh A, Malani AN, Latham R, Peglow S, Kerkering T, Kaufman D, McFadden J (2013) Clinical findings for fungal infections caused by methylprednisolone injections. N Engl J Med 369(17):1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Cho S-H, Seo S-C, Schmechel D, Grinshpun SA, Reponen T (2005) Aerodynamic characteristics and respiratory deposition of fungal fragments. Atmos Environ 39(30):5454–5465. doi:10.1016/j.atmosenv.2005.05.042

    Article  CAS  Google Scholar 

  • Choi H, Byrne S, Larsen LS, Sigsgaard T, Thorne PS, Larsson L, Sebastian A, Bornehag CG (2014) Residential culturable fungi, (1–3, 1–6)-β-d-glucan, and ergosterol concentrations in dust are not associated with asthma, rhinitis, or eczema diagnoses in children. Indoor Air 24(2):158–170. doi:10.1111/ina.12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chunduri JR (2014) Indoor fungal populations inhabiting cement structures-remedial measures. IOSR J Environ Sci Toxicol Food Technol 8(4):2319–2399

    Google Scholar 

  • Chung W-Y, Wi S-G, Bae H-J, Park B-D (1999) Microscopic observation of wood-based composites exposed to fungal deterioration. J Wood Sci 45(1):64–68

    Article  CAS  Google Scholar 

  • Chung YJ, Copeland LB, Doerfler DL, Ward MDW (2010) The relative allergenicity of Stachybotrys chartarum compared to house dust mite extracts in a mouse model. Inhal Toxicol 22(6):460–468

    Article  CAS  PubMed  Google Scholar 

  • Cui Y (2014) When mites attack: domestic mites are not just allergens. Parasit Vectors 7(1):411. doi:10.1186/1756-3305-7-411

    Article  PubMed  PubMed Central  Google Scholar 

  • Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22(3):447–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC, Mendell MJ, Macher JM, Kumagai K, Bradman A, Holland N, Harley K, Eskenazi B, Peccia J (2014) Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24(3):236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26(4):781–803

    Article  CAS  PubMed  Google Scholar 

  • Denning DW, Perlin DS (2011) Azole resistance in Aspergillus: a growing public health menace. Future Microbiol 6(11):1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Desroches TC, McMullin DR, Miller JD (2014) Extrolites of Wallemia sebi, a very common fungus in the built environment. Indoor Air 24(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Eduard W, Heederik D, Duchaine C, Green BJ (2012) Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J Environ Monit 14(2):334–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elidemir O, Colasurdo GN, Rossmann SN, Fan LL (1999) Isolation of Stachybotrys from the lung of a child with pulmonary hemosiderosis. Pediatrics 104(4):964–966

    Article  CAS  PubMed  Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. CABI Publishing, Wallingford

    Google Scholar 

  • Ellis A, Day J (2011) Allergenic microorganisms and hypersensitivity. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments, diversity, health impacts, investigation and control. CRC Press, Boca Raton, FL, pp 147–182

    Google Scholar 

  • Eppley RM, Bailey WJ (1973) 12,13-Epoxy-delta 9-trichothecenes as the probable mycotoxins responsible for stachybotryotoxicosis. Science 181(101):758–760

    Article  CAS  PubMed  Google Scholar 

  • Etzel R, Montaña E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG (1998) Acute pulmonary hemorrhage in infants associated with exposure to stachybotrys atra and other fungi. Arch Pediatr Adolesc Med 152(8):757–762, doi:10-1001/pubs.Pediatr Adolesc Med.-ISSN-1072-4710-152-8-poa8148

    Article  CAS  PubMed  Google Scholar 

  • Faulk CT, Lesher JL Jr (1995) Phaeohyphomycosis and Mycobacterium fortuitum abscesses in a patient receiving corticosteroids for sarcoidosis. J Am Acad Dermatol 33(2):309–311

    Article  CAS  PubMed  Google Scholar 

  • Favata E, Neill H, Yang C (2000) Emerging microbial diseases of the indoor environment. In: Couturier AJ (ed) Occupational and environmental infectious diseases. OEM Press, Beverly Farms, MA, pp 697–716

    Google Scholar 

  • Fernando WG, Miller J, Seaman W, Seifert K, Paulitz T (2000) Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Can J Bot 78(4):497–505

    Google Scholar 

  • Filip Z (2009) Environmental microbiology, soil science, nanoscience: a planetary view. In: Simeonov LI, Hassanien MA (eds) Exposure and risk assessment of chemical pollution—contemporary methodology. Springer, Dordrecht, pp 259–270

    Chapter  Google Scholar 

  • Fiore-Donno AM, Kamono A, Meyer M, Schnittler M, Fukui M, Cavalier-Smith T (2012) 18S rDNA phylogeny of Lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa). PLoS One 7(4), e35359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flannigan B, Miller J (2001) Microbial growth in indoor environments. In: Flannigan B, Samson R, Miller J (eds) Microorganisms in home and indoor work environments, vol 36. Taylor & Francis, New York, p 67

    Chapter  Google Scholar 

  • Futai K (2013) Pine wood nematode, Bursaphelenchus xylophilus. Annu Rev Phytopathol 51:61–83

    Article  CAS  PubMed  Google Scholar 

  • Gareis M, Gottschalk C (2014) Stachybotrys spp. and the guttation phenomenon. Mycotoxin Res 30:151–159

    Article  CAS  PubMed  Google Scholar 

  • Geiser D, Klich M, Frisvad JC, Peterson S, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME, Brown DW, Burgess LW, Chulze S, Coleman JJ (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103(5):400–408

    Article  PubMed  Google Scholar 

  • Gerba CP, Rose JB, Haas CN (1996) Sensitive populations: who is at the greatest risk? Int J Food Microbiol 30(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Ghosal S, Macher JM, Ahmed K (2012) Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage. Environ Sci Technol 46(11):6088–6095

    Article  CAS  PubMed  Google Scholar 

  • Gold WL, Vellend H, Salit IE, Campbell I, Summerbell R, Rinaldi M, Simor AE (1994) Successful treatment of systemic and local infections due to Exophiala species. Clin Infect Dis 19(2):339–341

    Article  CAS  PubMed  Google Scholar 

  • Gong J-Y, Chen Y-C, Huang Y-T, Tsai M-C, Yu K-P (2014) For inactivation of mold spores by UVC radiation, TiO2 nanoparticles may act as a “sun block” better than as a photocatalytic disinfectant, and ozone acts as a promoter. Photochem Photobiol Sci 13:1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Goodley J, Clayton Y, Hay R (1994) Environmental sampling for aspergilli during building construction on a hospital site. J Hosp Infect 26(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Górny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SA (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68(7):3522–3531. doi:10.1128/aem.68.7.3522-3531.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grant C, Hunter C, Flannigan B, Bravery A (1989) The moisture requirements of moulds isolated from domestic dwellings. Int Biodeterior 25(4):259–284

    Article  Google Scholar 

  • Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115(5):1043–1048. doi:10.1016/j.jaci.2005.02.009

    Article  PubMed  Google Scholar 

  • Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D (2006) Airborne fungal fragments and allergenicity. Med Mycol 44(Supplement 1):S245–S255. doi:10.1080/13693780600776308

    Article  CAS  PubMed  Google Scholar 

  • Green BJ, Schmechel D, Summerbell RC (2011) Aerosolized fungal fragments. In: Adnan O, Samson RA (eds) Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers, Amsterdam, pp 211–243

    Chapter  Google Scholar 

  • Grimsley L, Chulada PC, Kennedy S, White L, Wildfire J, Cohn RD, Mitchell H, Thornton E, El-Dahr J, Mvula MM (2012) Indoor environmental exposures for children with asthma enrolled in the HEAL study, post-Katrina New Orleans. Environ Health Perspect 120(1):1600–1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Harriman L (2012) Mold and dampness. ASHRAE J 54(12):132–133

    Google Scholar 

  • Haugland RA, Heckman JL, Wymer LJ (1999) Evaluation of different methods for the extraction of DNA from fungal conidia by quantitative competitive PCR analysis. J Microbiol Methods 37(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Haverinen-Shaughnessy U, Borras-Santos A, Turunen M, Zock JP, Jacobs J, Krop EJM, Casas L, Shaughnessy R, Täubel M, Heederik D, Hyvärinen A, Pekkanen J, Nevalainen A (2012) Occurrence of moisture problems in schools in three countries from different climatic regions of Europe based on questionnaires and building inspections—the HITEA study. Indoor Air 22(6):457–466. doi:10.1111/j.1600-0668.2012.00780.x

    Article  CAS  PubMed  Google Scholar 

  • Hernberg S, Sripaiboonkij P, Quansah R, Jaakkola JJ, Jaakkola MS (2014) Indoor molds and lung function in healthy adults. Respir Med 108(5):677–684

    Article  PubMed  Google Scholar 

  • Hodgson M, Flannigan B (2011) Occupational respiratory disease: hypersensitivity pneumonitis and other forms of interstitial lung disease. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments, diversity, health impacts, investigation and control. CRC Press, Boca Raton, FL, pp 183–203

    Google Scholar 

  • Hodgson MJ, Morey P, Leung WY, Morrow L, Miller D, Jarvis BB, Robbins H, Halsey JF, Storey E (1998) Building-associated pulmonary disease from exposure to Stachybotrys chartarum and Aspergillus versicolor. J Occup Environ Med 40(3):241–249

    Article  CAS  PubMed  Google Scholar 

  • Hokeness K, Kratch J, Nadolny C, Aicardi K, Reid CW (2013) The effects of fungal volatile organic compounds on bone marrow stromal cells. Can J Microbiol 60(1):1–4. doi:10.1139/cjm-2013-0708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holme J, Hägerhed‐Engman L, Mattsson J, Sundell J, Bornehag CG (2010) Culturable mold in indoor air and its association with moisture—related problems and asthma and allergy among Swedish children. Indoor Air 20(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97(6):1316–1329

    Article  CAS  PubMed  Google Scholar 

  • Hospenthal D, Kwon-Chung K, Bennett J (1998) Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol 36(3):165–168

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2(1):87–95. doi:10.5598/imafungus.2011.02.01.12

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu NY, Wang JY, Su HJ (2010) A dose-dependent relationship between the severity of visible mold growth and IgE levels of pre-school-aged resident children in Taiwan. Indoor Air 20(5):392–398. doi:10.1111/j.1600-0668.2010.00663.x

    Article  PubMed  Google Scholar 

  • Hu Y, Liu W, Huang C, Zou Z, Zhao Z, Shen L, Sundell J (2014) Home dampness, childhood asthma, hay fever, and airway symptoms in Shanghai, China: associations, dose—response relationships, and lifestyle’s influences. Indoor Air 24(5):450–463

    Article  CAS  PubMed  Google Scholar 

  • Hwang B-F, Liu I, Huang T-P (2012) Gene–environment interaction between interleukin-4 promoter and molds in childhood asthma. Ann Epidemiol 22(4):250–256

    Article  PubMed  Google Scholar 

  • Institute of Medicine (2000) Clearing the air: asthma and indoor air exposures. National Academies Press, Washington, DC

    Google Scholar 

  • IOM IoMCoDIS, Health (2004) Damp indoor spaces and health. National Academies Press, Washington DC

    Google Scholar 

  • Islam Z, Harkema JR, Pestka JJ (2006) Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect 114(7):1099–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola MS, Quansah R, Hugg TT, Heikkinen SA, Jaakkola JJ (2013) Association of indoor dampness and molds with rhinitis risk: a systematic review and meta-analysis. J Allergy Clin Immunol 132(5):1099–1110, e1018

    Article  PubMed  Google Scholar 

  • Johanning E, Auger P, Morey P, Yang C, Olmsted E (2014) Review of health hazards and prevention measures for response and recovery workers and volunteers after natural disasters, flooding, and water damage: mold and dampness. Environ Health Prev Med 19(2):93–99. doi:10.1007/s12199-013-0368-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones EK, Sumner KG, Gochfeld M (2013) Residential flood damage after hurricane Floyd, mold, household remediation, and respiratory health. Remediat J 24(1):107–120. doi:10.1002/rem.21381

    Article  Google Scholar 

  • Kainer MA, Reagan DR, Nguyen DB, Wiese AD, Wise ME, Ward J, Park BJ, Kanago ML, Baumblatt J, Schaefer MK (2012) Fungal infections associated with contaminated methylprednisolone in Tennessee. N Engl J Med 367(23):2194–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W (2014) Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect 123(1):6–20. doi:10.1289/ehp.1307922

    PubMed  PubMed Central  Google Scholar 

  • Karvala K, Nordman H, Luukkonen R, Uitti J (2014) Asthma related to workplace dampness and impaired work ability. Int Arch Occup Environ Health 87(1):1–11. doi:10.1007/s00420-012-0830-0

    Article  PubMed  Google Scholar 

  • Kennedy K, Grimes C (2013) Indoor water and dampness and the health effects on children: a review. Curr Allergy Asthma Rep 13(6):672–680

    Article  PubMed  Google Scholar 

  • Kirk P, Cannon P, David J, Stalpers J (2001) Ainsworth & Bisby’s dictionary of the fungi, 9th edn. CAB International, Wallingford

    Google Scholar 

  • Kirk PM, Cannon PF, Minter D, Stalpers JA (2008) Dictionary of the fungi. CABI, Wallingford

    Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Latgé J-P (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12(2):310–350

    PubMed  PubMed Central  Google Scholar 

  • Lee S-A, Liao C-H (2014) Size-selective assessment of agricultural workers’ personal exposure to airborne fungi and fungal fragments. Sci Total Environ 466–467:725–732. doi:10.1016/j.scitotenv.2013.07.104

    Article  PubMed  CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42(D1):D744–D748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D-W, Kendrick B (1995a) Indoor aeromycota in relation to residential characteristics and allergic symptoms. Mycopathologia 131(3):149–157. doi:10.1007/BF01102894

    Article  CAS  PubMed  Google Scholar 

  • Li D-W, Kendrick B (1995b) A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87(2):190–195

    Article  Google Scholar 

  • Li D-W, Kendrick B (1996) Functional and causal relationships between indoor and outdoor airborne fungi. Can J Bot 74(2):194–209

    Article  Google Scholar 

  • Li D-W, Yang CS (2004a) Fungal contamination as a major contributor to sick building syndrome. In: Straus D (ed) Sick building syndrome, vol 55, Advances in applied microbiology. Elsevier-Academic Press, San Diego, pp 31–112

    Google Scholar 

  • Li D-W, Yang CS (2004b) Notes on indoor fungi I: new records and noteworthy fungi from indoor environments. Mycotaxon 89:473–488

    Google Scholar 

  • Li D-W, Kendrick B, Spero D, Macdonald C (2008) Balaniopsis triangularis sp. nov. from indoor environments. Mycotaxon 105:105–110

    CAS  Google Scholar 

  • Li D-W, Zhao G, Yang C, Jalsrai A, Kerin B (2013) Four noteworthy hyphomycetes from indoor environments. Mycotaxon 125(1):111–121

    Article  Google Scholar 

  • Lierl MB (2013) Myxomycete (slime mold) spores: unrecognized aeroallergens? Ann Allergy Asthma Immunol 111 (6):537-541. e532. doi:10.1016/j.anai.2013.08.007

    Google Scholar 

  • LiPuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23(2):299–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockhart SR, Pham CD, Gade L, Iqbal N, Scheel CM, Cleveland AA, Whitney AM, Noble-Wang J, Chiller TM, Park BJ (2013) Preliminary laboratory report of fungal infections associated with contaminated methylprednisolone injections. J Clin Microbiol 51(8):2654–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Li L, Zhu T, Ba M, Li G, Gu Q, Guo Y, Li D (2013) Phenylspirodrimanes with anti-HIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J Nat Prod 76(12):2298–2306

    Article  CAS  PubMed  Google Scholar 

  • Macher J (2001) Review of methods to collect settled dust and isolate culturable microorganisms. Indoor Air 11(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Madsen AM (2012) Effects of airflow and changing humidity on the aerosolization of respirable fungal fragments and conidia of Botrytis cinerea. Appl Environ Microbiol 78(11):3999–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EH, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers 56(1):131–144

    Article  Google Scholar 

  • Mankowski M, Morrell JJ (2000) Patterns of fungal attack in wood-plastic composites following exposure in a soil block test. Wood Fiber Sci 32(3):340–345

    CAS  Google Scholar 

  • Martin R (1988) Use of a high-through-put jet sampler for monitoring viable airborne propagules of Fusarium in wheat. Can J Plant Pathol 10(4):359–360

    Article  Google Scholar 

  • Matos T, De Hoog G, De Boer A, De Crom I, Haase G (2002) High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 45(9‐10):373–377

    Article  CAS  PubMed  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 75(2):182–187

    Article  CAS  PubMed  Google Scholar 

  • McNeill J, Barrie F, Buck W, Demoulin V, Greuter W, Hawksworth D, Herendeen P, Knapp S, Marhold K, Prado J (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Koeltz Scientific Books, Germany

    Google Scholar 

  • Meirer FC, Lindbergh CA (1935) Collecting microorganisms in the artic atmosphere with field notes and material. Sci Mon 40:5–20

    Google Scholar 

  • Moore R (1986) A note on Wallemia sebi. Antonie Van Leeuwenhoek 52(2):183–187

    Article  CAS  PubMed  Google Scholar 

  • Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL (2011) Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Change 104(3–4):575–597

    Article  Google Scholar 

  • Mullins J, Hutcheson PS, Slavin RG (1984) Aspergillus fumigatus spore concentration in outside air: Cardiff and St Louis compared. Clin Exp Allergy 14(4):351–354. doi:10.1111/j.1365-2222.1984.tb02215.x

    Article  CAS  Google Scholar 

  • mVOC (2015) mVOC: microbial volatile organic compound database. http://bioinformatics.charite.de/mvoc/index.php?site=home. Accessed 12 Jan 2015

  • Naegele A, Reboux G, Scherer E, Roussel S, Millon L (2013) Fungal food choices of Dermatophagoides farinae affect indoor fungi selection and dispersal. Int J Environ Health Res 23(2):91–95

    Article  PubMed  Google Scholar 

  • Nagayoshi M, Tada Y, West J, Ochiai E, Watanabe A, Toyotome T, Tanabe N, Takiguchi Y, Shigeta A, Yasuda T (2011) Inhalation of Stachybotrys chartarum evokes pulmonary arterial remodeling in mice, attenuated by Rho-Kinase Inhibitor. Mycopathologia 172(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen A, Taubel M, Hyvarinen A (2015) Indoor fungi: companions and contaminants. Indoor Air 25(2):125–156. doi:10.1111/ina.12182

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Thrane U (2002) Mould growth on building materials: secondary matabolites, mycotoxins and biomarkers. Technical University of Denmark (Danmarks Tekniske Universitet), Department of Systems Biology (Institut for Systembiologi),

    Google Scholar 

  • Nielsen KF, Thrane U, Larsen TO, Nielsen P, Gravesen S (1998) Production of mycotoxins on artificially inoculated building materials. Int Biodeter Biodegr 42(1):9–16

    Article  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438(7071):1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Padamsee M, Kumar TA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49(3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Pady S, Gregory P (1963) Numbers and viability of airborne hyphal fragments in England. Trans Br Mycol Soc 46(4):609–613

    Article  Google Scholar 

  • Pady S, Kramer C (1960) Kansas aeromycology VI: hyphal fragments. Mycologia 52:681–687

    Article  Google Scholar 

  • Park J-H, Cox-Ganser JM (2011) Mold exposure and respiratory health in damp indoor environments. Front Biosci (Elite Ed) 3:757–771

    Article  Google Scholar 

  • Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building–related illness: new insights into a public health enigma. Toxicol Sci 104(1):4–26

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37(4):811–812

    Article  CAS  PubMed  Google Scholar 

  • Pieckova E, Hurbankova M, Cerna S, Liskova A, Kovacikova Z, Kollarikova Z, Wimmerova S (2009) Inflammatory and haematotoxic potential of indoor Stachybotrys chartarum (Ehrenb.) Hughes metabolites. Arch Ind Hyg Toxicol (Arhiv Za Higijenu Rada i Toksikologiju) 60(4):401–409

    CAS  Google Scholar 

  • Pitkaranta M, Meklin T, Hyvarinen A, Paulin L, Auvinen P, Nevalainen A, Rintala H (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74(1):233–244. doi:10.1128/aem.00692-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt JI, Hocking AD (2009) Aspergillus and related teleomorphs. In: Pitt JI, Hocking AD (eds) Fungi and food spoilage. Springer, New York, pp 275–337

    Chapter  Google Scholar 

  • Pitt JI, Taylor JW (2014) Aspergillus, its sexual states, and the new International Code of Nomenclature. Mycologia 106(5):1051–1062. doi:10.3852/14-060

    Article  PubMed  Google Scholar 

  • Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, Picco AM, De Kimpe N (2012) Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol 116(9):941–953. doi:10.1016/j.funbio.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Pollard GF, Shaw A, Sowa M, Rand T, Thliveris JA, Scott JE (2013) Stachybotrys chartarum (atra) spore extract alters surfactant protein expression and surfactant function in isolated fetal rat lung epithelial cells, fibroblasts and human A549 cells. Open J Pediatr 3(3):243–256

    Article  Google Scholar 

  • Prezant B, Weekes DM, Miller JD (2008) Recognition, evaluation, and control of indoor mold. American Industrial Hygiene Association, Fairfax, VA

    Book  Google Scholar 

  • Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59(9):1886–1899

    Article  CAS  PubMed  Google Scholar 

  • Quansah R, Jaakkola MS, Hugg TT, Heikkinen SAM, Jaakkola JJK (2012) Residential dampness and molds and the risk of developing asthma: A systematic review and meta-analysis. PLoS One 7(11):1–9. doi:10.1371/journal.pone.0047526

    Article  CAS  Google Scholar 

  • Rácová Z, Wasserbauer R, Ryparová P (2013) Microscopic filamentous fungi in buildings, preventing their occurrence and their remediation using nanofibers. Adv Mater Res 649:89–92

    Article  Google Scholar 

  • Rakkestad KE, Skaar I, Ansteinsson VE, Solhaug A, Holme JA, Pestka JJ, Samuelsen JT, Dahlman HJ, Hongslo JK, Becher R (2010) DNA damage and DNA damage Responses in THP-1 monocytes after exposure to spores of either Stachybotrys chartarum or Aspergillus versicolor or to T-2 toxin. Toxicol Sci 115(1):140–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando RJ, Kwon C-W, Lefante JJ (2013) Exposures to thoracic particulate matter, endotoxin, and glucan during post-hurricane Katrina Restoration Work, New Orleans 2005–2012. J Occup Environ Hyg 11(1):9–18. doi:10.1080/15459624.2013.839879

    Article  CAS  Google Scholar 

  • Rao CY, Riggs MA, Chew GL, Muilenberg ML, Thorne PS, Van Sickle D, Dunn KH, Brown C (2007) Characterization of airborne molds, endotoxins, and glucans in homes in New Orleans after Hurricanes Katrina and Rita. Appl Environ Microbiol 73(5):1630–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Reponen T, Seo S-C, Grimsley F, Lee T, Crawford C, Grinshpun SA (2007) Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio. Atmos Environ 41(37):8140–8149. doi:10.1016/j.atmosenv.2007.06.027

    Article  CAS  PubMed Central  Google Scholar 

  • Rylander R (2014) Fungi in homes—how do we measure? Indoor Air 24(2):221–222. doi:10.1111/ina.12075

    Article  CAS  PubMed  Google Scholar 

  • Ryu SH, Moon HJ (2014) Mould germination and the growth rate on wallpapers with different physical properties and the surface structures. Indoor Built Environ 23(1):171–179

    Article  Google Scholar 

  • Sahlberg B, Gunnbjörnsdottir M, Soon A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D (2013) Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ 444:433–440

    Article  CAS  PubMed  Google Scholar 

  • Saint-Jean M, St-Germain G, Laferrière C, Tapiero B (2007) Hospital-acquired phaeohyphomycosis due to Exserohilum rostratum in a child with leukemia. Can J Infect Dis Med Microbiol 18(3):200

    PubMed  PubMed Central  Google Scholar 

  • Samir H, Wageh W, Abd-Elaziz Emam M (2014) Demonstration of aeroallergenicity of fungal hyphae and hyphal fragments among allergic rhinitis patients using a novel immunostaining technique. Egypt J Otolaryngol 30(1):17–22. doi:10.4103/1012-5574.127186

    Article  Google Scholar 

  • Samson R (1999) Ecology, detection and identification problems of moulds in indoor environments. In: Johanning E (ed) Bioaerosols, fungi and mycotoxins: health effects, assessment, prevention and control. Eastern New York Occupational and Environmental Health Center, Albany, NY, pp 33–37

    Google Scholar 

  • Samson R, Houbraken J (2011) Isolation and identification of fungi. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments, diversity, health impacts, investigation and control. CRC Press, Boca Raton, pp 265–278

    Google Scholar 

  • Samson RA, Pitt JI (1990) Modern concepts in Penicillium and Aspergillus classification. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  • Samson RA, Varga J (2007) Aspergillus systematics in the genomic era, vol 59. CBS Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food-and airborne fungi, 7th edn. Centraalbureau voor Schimmelcultures (CBS), Utrecht

    Google Scholar 

  • Samson R, Houbraken J, Summerbell R, Flannigan R, Miller J (2011) Common and important species of fungi and actinomycetes in indoor environments. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments, diversity, health impacts, investigation and control. CRC Press, Boca Raton, pp 321–513

    Google Scholar 

  • Sato Y, Aoki M, Kigawa R (2014) Microbial deterioration of tsunami-affected paper-based objects: a case study. Int Biodeter Biodegr 88:142–149. doi:10.1016/j.ibiod.2013.12.007

    Article  CAS  Google Scholar 

  • SCENIHR (2015) Nanotechnologies. http://ec.europa.eu/health/scientific_committees/opinions_layman/en/nanotechnologies/l-2/6-health-effects-nanoparticles.htm. Accessed 14 Jan 2015

  • Schell WA, Lee AG, Aime MC (2011) A new lineage in Pucciniomycotina: class Tritirachiomycetes, order Tritirachiales, family Tritirachiaceae. Mycologia 103(6):1331–1340. doi:10.3852/10-333

    Article  PubMed  Google Scholar 

  • Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6(4):261–279. doi:10.1007/s11557-007-0534-0

    Article  Google Scholar 

  • Scott JA (2001) Studies on indoor fungi. University of Toronto, Toronto

    Google Scholar 

  • Scott J, Untereiner WA, Wong B, Straus NA, Malloch D (2004) Genotypic variation in Penicillium chysogenum from indoor environments. Mycologia 96(5):1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Semeiks J, Borek D, Otwinowski Z, Grishin NV (2014) Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys. BMC Genomics 15(1):590. doi:10.1186/1471-2164-15-590

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo S, Choung JT, Cehn BT, Lindsley WG, Kim KY (2014) The level of submicron fungal fragments in homes with asthmatic children. Environ Res 131:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sercombe JK, Liu-Brennan D, McKay KO, Green BJ, Tovey ER (2014) Domestic exposure to fungal allergenic particles determined by halogen immunoassay using subject’s serum versus particles carrying three non-fungal allergens determined by allergen-specific HIA. Indoor Air 24(4):438–445. doi:10.1111/ina.12087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoni M, Cai GH, Norback D, Annesi‐Maesano I, Lavaud F, Sigsgaard T, Wieslander G, Nystad W, Canciani M, Viegi G (2011) Total viable molds and fungal DNA in classrooms and association with respiratory health and pulmonary function of European schoolchildren. Pediatr Allergy Immunol 22(8):843–852

    Article  PubMed  Google Scholar 

  • Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. CAB International, Wallingford

    Google Scholar 

  • Snelders E, Camps SM, Karawajczyk A, Schaftenaar G, Kema GH, Van der Lee HA, Klaassen CH, Melchers WJ, Verweij PE (2012) Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 7(3), e31801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa ACA, Almeida JRSL, Pereira CC, Ramiro Pastorinho M, Pereira ÂMC, Nogueira AJA, Taborda-Barata L, Teixeira JP, Correia ACM, Alves A (2014) Characterization of fungal communities in house dust samples collected from central Portugal—a preliminary survey. J Toxicol Environ Health A 77(14–16):972–982. doi:10.1080/15287394.2014.911137

    Article  CAS  PubMed  Google Scholar 

  • Stephenson SL (2011) From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. Fungal Divers 50(1):21–34

    Article  Google Scholar 

  • Steyn PS, Vleggaar R (1976) The structure of dihydrodeoxy-8-epi-austdiol and the absolute configuration of the azaphilones. J Chem Soc Perkin Trans 1(2):204–206

    Article  Google Scholar 

  • Storey E, Dangman K, Schenck P, DeBernardo R, Yang C, Bracker A, Hodgson M (2004) Guidance for clinicians on the recognition and management of health effects related to mold exposure and moisture indoors. University of Connecticut Health Center, Division of Occupational and Environmental Medicine, Center for Indoor Environments and Health, Storrs, CT

    Google Scholar 

  • Straus DC (2004) Sick building syndrome, vol 55. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Stringer J, Beard C, Miller R, Wakefield A (2002) A new name (Pneumocystis jiroveci) for Pneumocystis from humans. Emerg Infect Dis 8:891–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Stringer JR, Beard CB, Miller RF (2009) Spelling Pneumocystis jirovecii. Emerg Infect Dis 15(3):506

    Article  PubMed  PubMed Central  Google Scholar 

  • Summerbell R (2011) Respiratory tract infections caused by indoor fungi. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments, diversity, health impacts, investigation and control. CRC Press, Boca Raton, pp 205–226

    Google Scholar 

  • Summerbell RC, Gueidan C, Schroers HJ, De Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA (2011) Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 68:139–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttie E, Hill C, Jones D, Orsler R (1998) Chemically modified solid wood—I. Resistance to fungal attack. Mater Org 32:159–182

    CAS  Google Scholar 

  • Terracina FC (1974) Fine structure of the septum in Wallemia sebi. Can J Bot 52(12):2587–2590

    Article  Google Scholar 

  • Thelander O, Bjurman J, Boutelje J (1993) Increase in the content of low molecular carbon hydrates at lumber suracces during drying and correlation with nitrogen content, yellowing and mould growth. Wood Sci Technol 27:381–389

    Google Scholar 

  • Thom C, Church MB (1926) The Aspergilli. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Thom C, Raper KB (1945) A manual of the Aspergilli, vol 60. Soil science, vol 60. Williams & Wilkins Company, Baltimore, MD

    Google Scholar 

  • Tille P (2014) Opportunistic atypical fungus: pneumocystis jiroveci. Bailey & Scott’s diagnostic microbiology, 13th edn. Mosby, Inc., an affiliate of Elsevier Inc,

    Google Scholar 

  • Tischer C, Hohmann C, Thiering E, Herbarth O, Müller A, Henderson J, Granell R, Fantini M, Luciano L, Bergström A (2011) Meta—analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy 66(12):1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Tripi PA, Modlin S, Sorenson W, Dearborn DG (2000) Acute pulmonary haemorrhage in an infant during induction of general anaesthesia. Pediatr Anesth 10(1):92–94

    Article  CAS  Google Scholar 

  • Van Strien R, Gehring U, Belanger K, Triche E, Gent J, Bracken M, Leaderer B (2004) The influence of air conditioning, humidity, temperature and other household characteristics on mite allergen concentrations in the northeastern United States. Allergy 59(6):645–652

    Article  PubMed  Google Scholar 

  • Varga J, Kocsubé S, Szigeti G, Baranyi N, Vágvölgyi C, Despot DJ, Magyar D, Meijer M, Samson RA, Klarić MŠ (2014) Occurrence of black Aspergilli in indoor environments of six countries. Arh Hig Rada Toksikol 65(2):219–23

    Article  PubMed  Google Scholar 

  • Verhoeff A, Ev R‐H, Samson R, Brunekreef P, Jv W (1994) Fungal propagules in house dust. I Allergy 49(7):533–539

    Article  CAS  PubMed  Google Scholar 

  • Vesper SJ, Vesper MJ (2002) Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum. Infect Immun 70(4):2065–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA (2001) Initial characterization of the hemolysin stachylysin from Stachybotrys chartarum. Infect Immun 69(2):912–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesper S, McKinstry C, Haugland R, Wymer L, Bradham K, Ashley P, Cox D, Dewalt G, Friedman W (2007) Development of an environmental relative moldiness index for US homes. J Occup Environ Med 49(8):829–833

    Article  PubMed  Google Scholar 

  • Viitanen HA (1997) Modelling the time factor in the development of mould fungi-the effect of critical humidity and temperature conditions on pine and spruce sapwood. Holzforschung-International J Biol Chem Phys Technol Wood 51(1):6–14

    CAS  Google Scholar 

  • Wang Y, Hyde KD, McKenzie EHC, Jiang Y-L, Li D-W, Zhao D-G (2015) Overview of Stachybotrys (Memnoniella) and current species status. Fungal Divers 71(1):17–83. doi:10.1007/s13225-014-0319-0

    Article  Google Scholar 

  • Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66(8):3194–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2009) WHO guidelines for indoor air quality: dampness and mould. World Health Organization—Regional Office for Europe, DK-2100 Copenhagen O, Denmark.

    Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20(1):47–55. doi:10.1111/j.1096-0031.2003.00008.x

    Article  Google Scholar 

  • Wu X-Q, Yuan W-M, Tian X-J, Fan B, Fang X, Ye J-R, Ding X-L (2013) Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence. Int J Biol Sci 9(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würtz H, Sigsgaard T, Valbjørn O, Doekes G, Meyer HW (2005) The dustfall collector-a simple passive tool for long-term collection of airborne dust: a project under the Danish Mould in Buildings program (DAMIB). Indoor Air 15(s9):33–40

    Article  PubMed  Google Scholar 

  • Xie H, Aminuzzaman F, Xu L, Lai Y, Li F, Liu X (2010) Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans. Mycopathologia 169(6):467–473

    Article  PubMed  Google Scholar 

  • Yang CS (2007) A retrospective and forensic approach to assessment of fungal growth in the indoor environment. In: Yang Chin S, Heinsohn P (eds) Sampling and analysis of indoor microorganisms. Wiley, Hoboken, NJ, pp 215–229

    Chapter  Google Scholar 

  • Yang CS, Heinsohn PA (2007) Sampling and analysis of indoor microorganisms. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Yang C, Johanning E (2007) Airborne fungi and mycotoxins. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. American Society for Microbiology, Washington, DC, pp 972–988

    Google Scholar 

  • Yike I, Dearborn D (2011) Guest editorial—novel insights into the pathology of Stachybotrys chartarum. Mycopathologia 172(1):1–3

    Article  PubMed  Google Scholar 

  • Yu K-P, Huang Y-T, Yang S-C (2013) The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore. J Hazard Mater 261:155–162

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87(4):311–328

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58(1):157–183. doi:10.3114/sim.2007.58.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambettakis C (1955) Un nouveau champignon papyricole [Ascotricha erinacea]. Bulletin de la Société Botanique de France 102:219–225

    Article  Google Scholar 

Download references

Acknowledgment

We are very grateful to Dr. James LaMondia, The Connecticut Agricultural Experiment Station, USA, for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Wei Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, C., Pakpour, S., Klironomos, J., Li, DW. (2016). Microfungi in Indoor Environments: What Is Known and What Is Not. In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_15

Download citation

Publish with us

Policies and ethics