Application of an Integral Fluctuation Theorem to Turbulent Flows

  • N. ReinkeEmail author
  • D. Nickelsen
  • A. Engel
  • J. Peinke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 165)


There is a long lasting discussion on universal properties of turbulence. The following questions arise: do turbulent properties change with the Reynolds number, or are they even dependent on the large scale properties of turbulence? An important feature would be that turbulence could be taken as universal below some scales. In this case, even for turbulent flows which are generated on a large scale by different processes, the same subgrid models can be used, an important aspect for numerical simulations. For large eddy simulations, it is essential to know the connections between larger scales and the unresolved subgrid turbulence. From this aspect it is important to get a profound understanding of the turbulent cascade, relating turbulent structures on different scales. Rigorous results on the turbulent cascade are still missing.


Reynolds Number Large Eddy Simulation Entropy Production Velocity Increment Subgrid Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friedrich, R., Peinke, J.: Description of a turbulent cascade by a Fokker–Planck equation. Phys. Rev. Lett. 78, 863 (1997)CrossRefGoogle Scholar
  2. 2.
    Renner, C., Peinke, J., Friedrich, R., Chanal, O., Chabaud, B.: Universality of small scale turbulence. Phys. Rev. Lett. 89, 124502 (2002)CrossRefGoogle Scholar
  3. 3.
    Stresing, R., Peinke, J.: Towards a stochastic multi-point description of turbulence. New J. Phys. 12, 103046 (2010)CrossRefGoogle Scholar
  4. 4.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)CrossRefGoogle Scholar
  5. 5.
    Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)CrossRefGoogle Scholar
  6. 6.
    Nickelsen, D., Engel, A.: Probing small-scale intermittency with a fluctuation theorem. Phys. Rev. Lett. 110, 214501 (2012)CrossRefGoogle Scholar
  7. 7.
    Stresing, R., Peinke, J., Seoud, R.E., Vassilicos, J.C.: Defining a new class of turbulent flows. Phys. Rev. Lett. 104, 194501 (2010)CrossRefGoogle Scholar
  8. 8.
    Aronson, D., Löfdahl, L.: The plane wake of a cylinder. Measurements and inferences on the turbulence modeling. Phys. Fluids A 5, 1433 (1993)CrossRefGoogle Scholar
  9. 9.
    Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Science Classic. Cambridge University Press, Cambridge (1953)zbMATHGoogle Scholar
  10. 10.
    Lück, St., Renner, Ch., Peinke, J., Friedrich, R.: The Markov–Einstein coherence length—a new meaning for the Taylor length in turbulence. Phys. Lett. A 359, 335–338 (2006)Google Scholar
  11. 11.
    Tutkun, M., Mydlarski, L.: Markovian properties of passive scalar increments in grid-generated turbulence. New J. Phys. 6, 49 (2004)CrossRefGoogle Scholar
  12. 12.
    Nawroth, A.P., Peinke, J., Kleinhans, D., Friedrich, R.: Improved estimation of Fokker-Planck equations through optimisation. Phys. Rev. E. 76, 056102 (2007)CrossRefGoogle Scholar
  13. 13.
    Kleinhans, D., Friedrich, R., Nawroth, A., Peinke, J.: An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes. Phys. Lett. A 346, 42–46 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Blickle, V., Speck, T., Helden, L., Seifert, U., Bechinger, C.: Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Physics and ForWindUniversity of OldenburgOldenburgGermany
  2. 2.Institute of PhysicsUniversity of OldenburgOldenburgGermany

Personalised recommendations