Skip to main content

Building Proper Invariants for Eddy-Viscosity Models

  • Conference paper
  • First Online:
Progress in Turbulence VI

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 165))

  • 1013 Accesses

Abstract

Direct numerical simulations of the incompressible Navier-Stokes equations are limited to relatively low-Reynolds numbers. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grain simulations. Regularization and eddy-viscosity models for LES are examples thereof. They rely on differential operators that should capture well different flow configurations (laminar and 2D flows, near-wall behavior, transitional regime ...). Most of them are based on the combination of invariants of a symmetric second-order tensor that is derived from the gradient of the resolved velocity field. In the present work, they are presented in a framework where the models are represented as a combination of elements of a 5D phase space of invariants. In this way, new models can be constructed by imposing appropriate restrictions in this space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verstappen, R.: When does eddy viscosity damp subfilter scales sufficiently? J. Sci. Comput. 49(1), 94–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  3. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  4. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  5. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  MATH  Google Scholar 

  6. Trias, F.X., Folch, D., Gorobets, A., Oliva, A.: Building proper invariants for eddy-viscosity subgrid-scale models. Phys. Fluids 27(6), 065103 (2015)

    Article  Google Scholar 

  7. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(Re_{\tau } = 590\). Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  8. Trias, F.X., Gorobets, A., Oliva, A.: A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity. J. Comput. Phys. 253, 405–417 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Ministerio de Economía y Competitividad, Spain (ENE2014-60577-R) and a Ramón y Cajal postdoctoral contract (RYC-2012-11996). Calculations have been performed on the IBM MareNostrum supercomputer at the Barcelona Supercomputing Center. The authors thankfully acknowledge these institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Trias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Trias, F.X., Gorobets, A., Oliva, A. (2016). Building Proper Invariants for Eddy-Viscosity Models. In: Peinke, J., Kampers, G., Oberlack, M., Wacławczyk, M., Talamelli, A. (eds) Progress in Turbulence VI. Springer Proceedings in Physics, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-319-29130-7_14

Download citation

Publish with us

Policies and ethics