Skip to main content

Experience Using the IM Interlocking Screw System in Austere Environment

  • Chapter
  • First Online:
Book cover Orthopaedic Trauma in the Austere Environment

Abstract

The main influence a trauma surgeon has on fracture healing is soft-tissue care and stabilization of the fracture. Treatment of long-bone diaphyseal and many metaphyseal fractures is best accomplished by intramedullary (IM) nail interlocking screw systems. In settings where resources are in abundance, interlocking screws are typically placed using C-arm imaging, fracture tables, and other specialized equipment. These are not available in many developing countries, and therefore creativity is necessary to accomplish equivalent results. This chapter will describe innovations to accomplish placement of the IM nail and interlocking screws without these technological aids. The chapter is divided into sections for femur, tibia, humerus, hip, and pediatric femoral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SIGN Surgical Database. SIGN Fracture Care International. 2014. Accessed 2/14/2014.

    Google Scholar 

  2. Shah RK, Moehring HD, Singh RP, Dhakal A. Surgical Implant Generation Network (SIGN) intramedullary nailing of open fractures of the tibia. Int Orthop. 2004;28:163–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ikem IC, Ogunlusi JD, Ine HR. Achieving interlocking nails without using an image intensifier. Int Orthop. 2007;31:487–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ikpeme I, Ngim N, Udosen A, Onuba O, Enembe O, Bello S. External jig-aided intramedullary interlocking nailing of diaphyseal fractures: experience from a tropical developing centre. Int Orthop. 2011;35:107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Naeem-Ur-Razaq M, Qasim M, Khan MA, Sahibzada AS, Sultan S. Management outcome of closed femoral shaft fractures by open Surgical Implant Generation Network (SIGN) interlocking nails. J Ayub Med Coll Abbottabad. 2009;21:21–4.

    PubMed  Google Scholar 

  6. Ogunlusi JD, St Rose RS, Davids T. Interlocking nailing without imaging: the challenges of locating distal slots and how to overcome them in SIGN intramedullary nailing. Int Orthop. 2010;34:891–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shearer D, Cunningham B, Zirkle L. Population characteristics and clinical outcomes from the SIGN online surgical database. Tech Orthop. 2009;24:273–6.

    Article  Google Scholar 

  8. Young S, Lie SA, Hallan G, Zirkle LG, Engesaeter LB, Havelin LI. Low infection rates after 34,361 intramedullary nail operations in 55 low- and middle-income countries: validation of the Surgical Implant Generation Network (SIGN) online surgical database. Acta Orthop. 2011;82:737–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Young S, Lie SA, Hallan G, Zirkle LG, Engesaeter LB, Havelin LI. Risk factors for infection after 46,113 intramedullary nail operations in low- and middle-income countries. World J Surg. 2013;37:349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gosselin RA, Heitto M, Zirkle L. Cost-effectiveness of replacing skeletal traction by interlocked intramedullary nailing for femoral shaft fractures in a provincial trauma hospital in Cambodia. Int Orthop. 2009;33:1445–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gosselin R, Lavaly D. Perkins traction for adult femoral shaft fractures: a report on 53 patients in Sierra Leone. Int Orthop. 2007;31:697–702.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blasier RD, Aronson J, Tursky EA. External fixation of pediatric femur fractures. J Pediatr Orthop. 1997;17:342–6.

    CAS  PubMed  Google Scholar 

  13. Domb BG, Sponseller PD, Ain M, Miller NH. Comparison of dynamic versus static external fixation for pediatric femur fractures. J Pediatr Orthop. 2002;22:428–30.

    PubMed  Google Scholar 

  14. Skaggs DL, Leet AI, Money MD, Shaw BA, Hale JM, Tolo VT. Secondary fractures associated with external fixation in pediatric femur fractures. J Pediatr Orthop. 1999;19:582–6.

    CAS  PubMed  Google Scholar 

  15. Nowotarski PJ, Turen CH, Brumback RJ, Scarboro JM. Conversion of external fixation to intramedullary nailing for fractures of the shaft of the femur in multiply injured patients. J Bone Joint Surg Am. 2000;82:781–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bedi A, Karunakar MA. Physiologic effects of intramedullary reaming. Instr Course Lect. 2006;55:359–66.

    PubMed  Google Scholar 

  17. Giannoudis PV, Snowden S, Matthews SJ, Smye SW, Smith RM. Temperature rise during reamed tibial nailing. Clin Orthop Relat Res. 2002:(395)255–61. PubMed PMID: 11937890.

    Google Scholar 

  18. Henry SL, Adcock RA, Von Fraunhofer JA, Seligson D. Heat of intramedullary reaming. South Med J. 1987;80:173–6.

    Article  CAS  PubMed  Google Scholar 

  19. Leunig M, Hertel R. Thermal necrosis after tibial reaming for intramedullary nail fixation. A report of three cases. J Bone Joint Surg Br. 1996;78:584–7.

    CAS  PubMed  Google Scholar 

  20. Roberts JW, Libet LA, Wolinsky PR. Who is in danger? Impingement and penetration of the anterior cortex of the distal femur during intramedullary nailing of proximal femur fractures: preoperatively measurable risk factors. J Trauma Acute Care Surg. 2012;73:249–54.

    Article  PubMed  Google Scholar 

  21. Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23:810–5.

    Article  CAS  PubMed  Google Scholar 

  22. Patton GC, Coffey C, Sawyer SM, Viner RM, Haller DM, Bose K, Vos T, Ferguson J, Mathers CD. Global patterns of mortality in young people: a systematic analysis of population health data. Lancet. 2009;374:881–92.

    Article  PubMed  Google Scholar 

  23. Roth J, Shearer D, Zirkle LGJ, Johnson A, LaBarre P. Development and biomechanical testing of the SIGN hip construct. Tech Orthop. 2009;24:265–72. 210.1097/BTO.1090b1013e3181c1093ef1047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shearer MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shearer, D., Zirkle, L. (2016). Experience Using the IM Interlocking Screw System in Austere Environment. In: Robinson, J. (eds) Orthopaedic Trauma in the Austere Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-29122-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29122-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29120-8

  • Online ISBN: 978-3-319-29122-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics