Skip to main content

Genome-Wide Approaches for RNA Structure Probing

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 907))

Abstract

RNA molecules of all types fold into complex secondary and tertiary structures that are important for their function and regulation. Structural and catalytic RNAs such as ribosomal RNA (rRNA) and transfer RNA (tRNA) are central players in protein synthesis, and only function through their proper folding into intricate three-dimensional structures. Studies of messenger RNA (mRNA) regulation have also revealed that structural elements embedded within these RNA species are important for the proper regulation of their total level in the transcriptome. More recently, the discovery of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has shed light on the importance of RNA structure to genome, transcriptome, and proteome regulation. Due to the relatively small number, high conservation, and importance of structural and catalytic RNAs to all life, much early work in RNA structure analysis mapped out a detailed view of these molecules. Computational and physical methods were used in concert with enzymatic and chemical structure probing to create high-resolution models of these fundamental biological molecules. However, the recent expansion in our knowledge of the importance of RNA structure to coding and regulatory RNAs has left the field in need of faster and scalable methods for high-throughput structural analysis. To address this, nuclease and chemical RNA structure probing methodologies have been adapted for genome-wide analysis. These methods have been deployed to globally characterize thousands of RNA structures in a single experiment. Here, we review these experimental methodologies for high-throughput RNA structure determination and discuss the insights gained from each approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609. doi:10.1016/j.cell.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Kim SH (1978) Three-dimensional structure of transfer RNA and its functional implications. Adv Enzymol Relat Areas Mol Biol 46:279–315

    CAS  PubMed  Google Scholar 

  3. Yusupova G, Yusupov M (2014) High-resolution structure of the eukaryotic 80S ribosome. Annu Rev Biochem 83:467–486. doi:10.1146/annurev-biochem-060713-035445

    Article  CAS  PubMed  Google Scholar 

  4. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17. doi:10.1016/j.tibs.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Bocobza SE, Aharoni A (2014) Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae. Plant J Cell Mol Biol 79:693–703. doi:10.1111/tpj.12540

    Article  CAS  Google Scholar 

  6. Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, Klausner RD (1987) Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238:1570–1573

    Article  CAS  PubMed  Google Scholar 

  7. Williams AS, Marzluff WF (1995) The sequence of the stem and flanking sequences at the 3′ end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res 23:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325. doi:10.1038/334320a0

    Article  CAS  PubMed  Google Scholar 

  9. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307. doi:10.1038/nsmb.2480

    Article  CAS  PubMed  Google Scholar 

  10. Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40:5034–5051. doi:10.1093/nar/gks071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, Seeman NC, Rich A (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440

    Article  CAS  PubMed  Google Scholar 

  12. Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BF, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250:546–551

    Article  CAS  PubMed  Google Scholar 

  13. Holbrook SR, Kim S-H (1997) RNA crystallography. Biopolymers 44:3–21. doi:10.1002/(SICI)1097-0282(1997)44:1%3C3::AID-BIP2%3E3.0.CO;2-Z"

    Article  CAS  PubMed  Google Scholar 

  14. Scott LG, Hennig M (2008) RNA structure determination by NMR. In: Keith JM (ed) Methods in molecular biologytm. Humana Press, New York

    Google Scholar 

  15. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74. doi:10.1093/nar/gkn188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathews DH (2014) RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinforma 46:12.6.1–12.6.25. doi:10.1002/0471250953.bi1206s46

    Article  Google Scholar 

  17. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang SH, RajBhandary UL (1968) Studies on polynucleotides. LXXXI. Yeast phenylalanine transfer ribonucleic acid: partial digestion with pancreatic ribonuclease. J Biol Chem 243:592–597

    CAS  PubMed  Google Scholar 

  20. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loverix S, Steyaert J (2001) Deciphering the mechanism of RNase T1. Methods Enzymol 341:305–323

    Article  CAS  PubMed  Google Scholar 

  22. Uchida T, Arima T, Egami F (1970) Specificity of RNase U2. J Biochem (Tokyo) 67:91–102

    CAS  Google Scholar 

  23. Volkin E, Cohn WE (1953) On the structure of ribonucleic acids. II The products of ribonuclease action. J Biol Chem 205:767–782

    CAS  PubMed  Google Scholar 

  24. Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26:457–491

    Article  CAS  PubMed  Google Scholar 

  25. Knapp G (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol 180:192–212

    Article  CAS  PubMed  Google Scholar 

  26. Silberklang M, Gillum AM, RajBhandary UL (1977) The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res 4:4091–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Favorova OO, Fasiolo F, Keith G, Vassilenko SK, Ebel JP (1981) Partial digestion of tRNA—aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry (Mosc) 20:1006–1011

    Article  CAS  Google Scholar 

  28. Lockard RE, Kumar A (1981) Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res 9:5125–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowman HB, Draper DE (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem 261:5396–5403

    CAS  PubMed  Google Scholar 

  30. Nicholson AW (2014) Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA 5:31–48. doi:10.1002/wrna.1195

    Article  CAS  PubMed  Google Scholar 

  31. Peattie DA (1979) Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A 76:1760–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peattie DA, Gilbert W (1980) Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A 77:4679–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inoue T, Cech TR (1985) Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A 82:648–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lempereur L, Nicoloso M, Riehl N, Ehresmann C, Ehresmann B, Bachellerie JP (1985) Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res 13:8339–8357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antal M, Boros É, Solymosy F, Kiss T (2002) Analysis of the structure of human telomerase RNA in vivo. Nucleic Acids Res 30:912–920. doi:10.1093/nar/30.4.912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ares M, Igel AH (1990) Lethal and temperature-sensitive mutations and their suppressors identify an essential structural element in U2 small nuclear RNA. Genes Dev 4:2132–2145

    Article  CAS  PubMed  Google Scholar 

  37. Harris KA, Crothers DM, Ullu E (1995) In vivo structural analysis of spliced leader RNAs in Trypanosoma brucei and Leptomonas collosoma: a flexible structure that is independent of cap4 methylations. RNA 1:351–362

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Metz DH, Brown GL (1969) Investigation of nucleic acid secondary structure by means of chemical modification with a carbodiimide reagent. I. Reaction between N-cyclohexyl-N′-β-(4-methylmorpholinium)ethylcarbodiimide and model nucleotides. Biochemistry (Mosc) 8:2312–2328. doi:10.1021/bi00834a012

    Article  CAS  Google Scholar 

  39. Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364. doi:10.1038/334362a0

    Article  CAS  PubMed  Google Scholar 

  40. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623. doi:10.1038/nprot.2007.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wells SE, Hughes JM, Igel AH, Ares M (2000) Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318:479–493

    Article  CAS  PubMed  Google Scholar 

  42. Lawley PD, Brookes P (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem J 89:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Litt M (1969) Structural studies on transfer ribonucleic acid. I. Labeling of exposed guanine sites in yeast phenylalanine transfer ribonucleic acid with kethoxal. Biochemistry 8:3249–3253. doi:10.1021/bi00836a017

    Article  CAS  PubMed  Google Scholar 

  44. Powers T, Changchien LM, Craven GR, Noller HF (1988) Probing the assembly of the 3′ major domain of 16S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J Mol Biol 200:309–319

    Article  CAS  PubMed  Google Scholar 

  45. Powers T, Stern S, Changchien LM, Noller HF (1988) Probing the assembly of the 3′ major domain of 16S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J Mol Biol 201:697–716

    Article  CAS  PubMed  Google Scholar 

  46. Stern S, Wilson RC, Noller HF (1986) Localization of the binding site for protein S4 on 16S ribosomal RNA by chemical and enzymatic probing and primer extension. J Mol Biol 192:101–110

    Article  CAS  PubMed  Google Scholar 

  47. Stern S, Changchien LM, Craven GR, Noller HF (1988) Interaction of proteins S16, S17 and S20 with 16S ribosomal RNA. J Mol Biol 200:291–299

    Article  CAS  PubMed  Google Scholar 

  48. Stern S, Powers T, Changchien LM, Noller HF (1988) Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16S rRNA. J Mol Biol 201:683–695

    Article  CAS  PubMed  Google Scholar 

  49. Svensson P, Changchien LM, Craven GR, Noller HF (1988) Interaction of ribosomal proteins, S6, S8, S15 and S18 with the central domain of 16S ribosomal RNA. J Mol Biol 200:301–308

    Article  CAS  PubMed  Google Scholar 

  50. Zaug AJ, Cech TR (1995) Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1:363–374

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231. doi:10.1021/ja043822v

    Article  CAS  PubMed  Google Scholar 

  52. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616. doi:10.1038/nprot.2006.249

    Article  CAS  PubMed  Google Scholar 

  53. Loughrey D, Watters KE, Settle AH, Lucks JB (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42:000–000. doi:10.1093/nar/gku909

    Article  Google Scholar 

  54. Hector RD, Burlacu E, Aitken S, Bihan TL, Tuijtel M, Zaplatina A, Cook AG, Granneman S (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42:12138–12154. doi:10.1093/nar/gku815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145. doi:10.1021/ja0704028

    Article  CAS  PubMed  Google Scholar 

  56. Mortimer SA, Trapnell C, Aviran S, Pachter L, Lucks JB (2012) SHAPE-seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol 4:275–297. doi:10.1002/9780470559277.ch120019

    PubMed  Google Scholar 

  57. Steen K-A, Rice GM, Weeks KM (2012) Fingerprinting noncanonical and tertiary RNA structures by differential SHAPE reactivity. J Am Chem Soc 134:13160–13163. doi:10.1021/ja304027m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. doi:10.1038/nature09322

    Article  CAS  PubMed  Google Scholar 

  59. Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001. doi:10.1038/nmeth.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, Cao K, Wang L-S, Gregory BD (2010) Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLoS Genet 6, e1001141. doi:10.1371/journal.pgen.1001141

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wan Y, Qu K, Ouyang Z, Chang HY (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 8:849–869. doi:10.1038/nprot.2013.045

    Article  CAS  PubMed  Google Scholar 

  62. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48:169–181. doi:10.1016/j.molcel.2012.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709. doi:10.1038/nature12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, Valladares O, Yang J, Bambina S, Sabin LR, Murray JI, Lamitina T, Raj A, Cherry S, Wang L-S, Gregory BD (2012) Global analysis of RNA secondary structure in two metazoans. Cell Rep 1:69–82. doi:10.1016/j.celrep.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  65. Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD (2012) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24:4346–4359. doi:10.1105/tpc.112.104232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N, Nelson ADL, Beilstein MA, Daldal F, Deal RB, Gregory BD (2015) Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57:376–388. doi:10.1016/j.molcel.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  67. Silverman IM, Gregory BD (2015) Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA-protein interaction sites. Methods 72:76–85. doi:10.1016/j.ymeth.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  68. Silverman IM, Li F, Alexander A, Goff L, Trapnell C, Rinn JL, Gregory BD (2014) RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol 15:R3. doi:10.1186/gb-2014-15-1-r3

    Article  PubMed  PubMed Central  Google Scholar 

  69. Willmann MR, Berkowitz ND, Gregory BD (2014) Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes—GMUCT 2.0. Methods 67:64–73. doi:10.1016/j.ymeth.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  70. Talkish J, May G, Lin Y, Woolford JL, McManus CJ (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720. doi:10.1261/rna.042218.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. doi:10.1038/nature12894

    Article  CAS  PubMed  Google Scholar 

  72. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700. doi:10.1038/nature12756

    Article  CAS  PubMed  Google Scholar 

  73. Incarnato D, Neri F, Anselmi F, Oliviero S (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15:491. doi:10.1186/PREACCEPT-1911964213137914

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu E, Fabris D (2003) Direct probing of RNA structures and RNA-protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization fourier transform mass spectrometry. J Mol Biol 330:211–223. doi:10.1016/S0022-2836(03)00589-8

    Article  CAS  PubMed  Google Scholar 

  75. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6(4), e96. doi:10.1371/journal.pbio.0060096

    Article  PubMed  PubMed Central  Google Scholar 

  76. Giguère T, Adkar-Purushothama CR, Bolduc F, Perreault J-P (2014) Elucidation of the structures of all members of the Avsunviroidae family. Mol Plant Pathol 15:767–779

    Article  PubMed  Google Scholar 

  77. García-Nuñez S, Gismondi MI, König G, Berinstein A, Taboga O, Rieder E, Martínez-Salas E, Carrillo E (2014) Enhanced IRES activity by the 3′UTR element determines the virulence of FMDV isolates. Virology 448:303–313. doi:10.1016/j.virol.2013.10.027

    Article  PubMed  Google Scholar 

  78. Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE (2013) The kissing-loop T-shaped structure translational enhancer of pea enation mosaic virus can bind simultaneously to ribosomes and a 5′ proximal hairpin. J Virol 87:11987–12002. doi:10.1128/JVI.02005-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068. doi:10.1073/pnas.1106501108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seetin MG, Kladwang W, Bida JP, Das R (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol Biol 1086:95–117. doi:10.1007/978-1-62703-667-2_6

    Article  CAS  PubMed  Google Scholar 

  81. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Change HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519(7544): 486–490. doi:10.1038/nature14263

    Google Scholar 

  82. Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469–479. doi:10.1038/nrg3681

    Article  CAS  PubMed  Google Scholar 

  83. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258. doi:10.1126/science.1170160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryvkin P, Leung YY, Silverman IM, Childress M, Valladares O, Dragomir I, Gregory BD, Wang L-S (2013) HAMR: high-throughput annotation of modified ribonucleotides. RNA 19:1684–1692. doi:10.1261/rna.036806.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aviran S, Pachter L (2014) Rational experiment design for sequencing-based RNA structure mapping. RNA 20:1864–1877. doi:10.1261/rna.043844.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank past and present members of the Gregory lab for helpful discussions, especially Qi Zheng, Fan Li, and Lee Vandivier. This work was supported by an NSF Career Award MCB-1053846 and NSF grant MCB-1243947 to BDG. We declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silverman, I.M., Berkowitz, N.D., Gosai, S.J., Gregory, B.D. (2016). Genome-Wide Approaches for RNA Structure Probing. In: Yeo, G. (eds) RNA Processing. Advances in Experimental Medicine and Biology, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-29073-7_2

Download citation

Publish with us

Policies and ethics