Skip to main content

Analogies in Modelling-Based Teaching and Learning

  • Chapter
  • First Online:
Modelling-based Teaching in Science Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 9))

Abstract

The creation and use of analogies play important roles in modelling. An analogy is created when some aspects of an unknown target are compared with those of a source about which more is known. The drawing of an analogy between a target and a source involves following a series of steps, the nature of the possible relationship being bounded by a series of requirements and constraints. Suitable analogies, once created, play central roles in providing explanations for difficult models , acting as teaching models to promote the understanding of conceptually difficult target models. This role has been extensively investigated in science education. MBT provides an opportunity to introduce students to the creative role of analogies. A case study is presented on the creative use of analogy in each aspect of a modelling activity is facilitated by MBT. The teacher’s part in the operation of both these roles – explanatory and creative – is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In more details, the TWA consists of six operations that teachers have to follow: “1. Introduce target concept . 2. Cue retrieval of analog concepts. 3. Identify relevant features of target and analog. 4. Map similarities. 5. Indicate where analogy breaks down. 6. Draw conclusions.” (Glynn et al., 1995, p. 261). They also admit that the order in which the operations are carried out may vary, as well as the number of times any operation is carried out.

References

  • Aragón, M. M., Oliva-Martínez, J. M., & Navarrete, A. (2014). Contributions of learning through analogies to the construction of secondary education pupils’ verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960–1984.

    Article  Google Scholar 

  • Aubusson, P. J., & Fogwill, S. (2006). Role play as analogical modelling in science. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 93–104). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Brown, D. E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201–214.

    Article  Google Scholar 

  • Brown, D. E., & Clement, J. J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.

    Article  Google Scholar 

  • Chiu, M.-H., & Lin, J.-W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.

    Article  Google Scholar 

  • Clement, J. J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12, 563–586.

    Article  Google Scholar 

  • Clement, J. J. (2008). Creative model construction in scientists and students - the role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Cosgrove, M. (1995). A study of science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295–310.

    Article  Google Scholar 

  • Craig, D. L., Nersessian, N. J., & Catrambone, R. (2002). Perceptual simulation in analogical problem solving. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 167–189). New York, NY: Kluwer Academic and Plenum.

    Chapter  Google Scholar 

  • Curtis, R. V., & Reigeluth, C. M. (1984). The use of analogies in written text. Instructional Science, 13, 99–117.

    Article  Google Scholar 

  • Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change? Science Education, 78(6), 601–614.

    Article  Google Scholar 

  • Dagher, Z. R. (1995). Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(3), 259–270.

    Article  Google Scholar 

  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672.

    Article  Google Scholar 

  • Duit, R., & Glynn, S. (1996). Mental modelling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 166–176). London, UK: Falmer.

    Google Scholar 

  • Dunbar, K. (2000). How scientists think in the real world: Implications for science education. Journal of Applied Developmental Psychology, 21(1), 49–58.

    Article  Google Scholar 

  • Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. Trends in Cognitive Sciences, 5(8), 334–339.

    Article  Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.

    Article  Google Scholar 

  • Gentner, D. (2002). Analogy in scientific discovery: The case of Johannes Kepler. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 21–39). New York, NY: Kluwer Academic and Plenum.

    Chapter  Google Scholar 

  • Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy. American Psychologist, 52(1), 32–34.

    Article  Google Scholar 

  • Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56.

    Article  Google Scholar 

  • Gilbert, J. K. (2004). Models and modelling: Routes to a more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.

    Article  Google Scholar 

  • Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. M. Glynn, R. H. Yearny, & B. K. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Glynn, S. M., Britton, B. K., Semrud-Clikeman, M., & Muth, K. D. (1989). Analogical reasoning and problem solving in science textbooks. In J. A. Glover (Ed.), Handbook of creativity. New York, NY: Plenum Press.

    Google Scholar 

  • Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In S. Glynn & R. Duit (Eds.), Learning science in schools: Research reforming practice (pp. 247–273). Mahwah,NJ: Lawrence Erlbaum.

    Google Scholar 

  • Haglund, J. (2013). Collaborative and self-generated analogies in science education. Studies in Science Education, 49(1), 35–68.

    Article  Google Scholar 

  • Haglund, J., & Jeppsson, F. (2012). Using self-generated analogies in teaching of thermodynamics. Journal of Research in Science Teaching, 49(7), 898–921.

    Article  Google Scholar 

  • Haglund, J., & Jeppsson, F. (2014). Confronting conceptual challenges in thermodynamics by use of self-generated analogies. Science & Education, 23(7), 1505–1529.

    Article  Google Scholar 

  • Haglund, J., Jeppsson, F., & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96(4), 725–756.

    Article  Google Scholar 

  • Harrison, A. G., & Coll, R. K. (Eds.). (2008). Using analogies in middle and secondary science classrooms. Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1993). Teaching with analogies: A case study in grade-10 optics. Journal of Research in Science Teaching, 30(10), 1291–1307.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: Friend or foe? In P. Aubusson, A. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 11–24). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hesse, M. (1966). Models and analogies in science. Notre Dame, IN: Notre Dame Press.

    Google Scholar 

  • Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13(3), 295–355.

    Article  Google Scholar 

  • James, M. C., & Scharmann, L. C. (2007). Using analogies to improve the teaching performance of preservice teachers. Journal of Research in Science Teaching, 44(4), 565–585.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (1999). History and philosophy of science through models: The case of chemical kinetics. Science & Education, 8(3), 287–307.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2002a). Modelling, teachers’ views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2002b). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2006). The role of analog models in the understanding of the nature of models in chemistry. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 119–130). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Kaufman, D. R., Patel, V. L., & Magder, S. A. (1996). The explanatory role of spontaneously generated analogies in reasoning about physiological concepts. International Journal of Science Education, 18(3), 369–386.

    Article  Google Scholar 

  • Kind, P. M., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.

    Article  Google Scholar 

  • Laidler, K. J. (1995). The world of physical chemistry (2nd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: A multidisciplinary study. International Journal of Science Education, 36(1), 1–23.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.

    Google Scholar 

  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630.

    Article  Google Scholar 

  • Mason, L. (1996). Collaborative reasoning on self-generated analogies: Conceptual growth in understanding scientific phenomena. Educational Research and Evaluation, 2(4), 309–350.

    Article  Google Scholar 

  • May, D. B., Hammer, D., & Roy, P. (2006). Children’s analogical reasoning in a third-grade science discussion. Science Education, 90(2), 316–329.

    Article  Google Scholar 

  • Mellor, J. W. (1904). Chemical statics and dynamics. London, UK: Longmans Green.

    Google Scholar 

  • Mendonça, P. C. C., & Justi, R. (2008). Usando Analogias com Função Criativa: Uma nova estratégia para o Ensino de Química (Using analogies with creative function: A new strategy for chemistry teaching). Educació Química, 1, 24–29.

    Google Scholar 

  • Mendonça, P. C. C., & Justi, R. (2011). Contributions of the Model of Modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479–503.

    Article  Google Scholar 

  • Mozzer, N. B. (2013). O Entendimento Conceitual do Processo de Dissolução a partir da Elaboração de Modelos e sob a Perspectiva da Teoria de Campos Conceituais [Students’ conceptual understanding of dissolving in a modelling-based context and from the perspective of the theory of conceptual fields]. PhD thesis, Universidade Federal de Minas Gerais, Brazil.

    Google Scholar 

  • Mozzer, N. B., & Justi, R. (2009). Introdução ao Tema Dissolução através da Elaboração de Analogias pelos Alunos Fundamentada na Modelagem [Introduction to the topic dissolving from students’ drawing of analogies in a modelling-based teaching context]. Paper presented at the VII Encontro Nacional de Pesquisa em Educação em Ciências [VII Brazilian Conference on Research in Science Education], Florianópolis.

    Google Scholar 

  • Mozzer, N. B., & Justi, R. (2011). Students’ analogical reasoning when participating in modelling-based teaching activities. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), EBook proceedings of the ESERA 2011 conference - science learning and citizenship (pp. 764–769). Lyon, France: Université Lyon.

    Google Scholar 

  • Mozzer, N. B., & Justi, R. (2012). Students’ pre- and post-teaching analogical reasoning when they draw their analogies. International Journal of Science Education, 34(3), 429–458.

    Article  Google Scholar 

  • Mozzer, N. B., & Justi, R. (2013). Science teachers’ analogical reasoning. Research in Science Education, 43(4), 1689–1713.

    Article  Google Scholar 

  • Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3–44). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Kluwer and Plenum.

    Chapter  Google Scholar 

  • Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133–153). Cambridge, UK: Cambridge Univesity Press.

    Chapter  Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nersessian, N. J., & Chandrasekharan, S. (2009). Hybrid analogies in conceptual innovation in science. Cognitive Systems Research, 10(3), 178–188.

    Article  Google Scholar 

  • Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 95(5), 849–877.

    Article  Google Scholar 

  • Oliva-Martínez, J. M., & Aragón, M. M. (2009a). Aportaciones de las analogías al desarrollo de pensamiento modelizador de los alumnos en química [Contribution of analogies to develop modeling thought of chemistry students]. Educacion Quimica, 20(1), 41–54.

    Google Scholar 

  • Oliva-Martínez, J. M., & Aragón, M. M. (2009b). Contribución del aprendizaje con analogías al pensamiento modelizador de los alumnos en Ciencias: Marco Teórico [Contribution of learning with analogies to the modeling thought of science students]. Enseñanza de las Ciencias, 27(2), 195–208.

    Google Scholar 

  • Oliva-Martínez, J. M., Aragón, M. M., Mateo, J., & Bonat, M. (2001). Una propuesta didáctica basada en la investigación para el uso de analogías en la enseñanza de las ciencias [A teaching proposal based on the investigation about the use of analogies in science education]. Enseñanza de las Ciencias, 19(3), 453–470.

    Google Scholar 

  • Oliva-Martínez, J. M., Azcárate, P., & Navarrete, A. (2007). Teaching models in the use of analogies as a resource in the science classroom. International Journal of Science Education, 29(1), 45–66.

    Article  Google Scholar 

  • Pittman, K. M. (1999). Student-generated analogies: Another way of knowing. Journal of Research in Science Teaching, 36(1), 1–22.

    Article  Google Scholar 

  • Spier-Dance, L., Mayer-Smith, J., Dance, N., & Khan, S. (2005). The role of student-generated analogies in promoting conceptual understanding for undergraduate chemistry students. Research in Science and Technological Education, 23(2), 163–178.

    Article  Google Scholar 

  • Thiele, R. B., & Treagust, D. F. (1995). Analogies in chemistry textbooks. International Journal of Science Education, 17(6), 783–795.

    Article  Google Scholar 

  • Treagust, D. F., Duit, R., Joslin, P., & Lindauer, I. (1992). Science teachers’ use of analogies: Observations from classroom practice. International Journal of Science Education, 14(4), 413–422.

    Article  Google Scholar 

  • Venville, G. J. (2008). Effective biology analogies. In A. G. Harrison & R. K. Coll (Eds.), Using analogies in middle and secondary science classrooms (pp. 82–126). Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  • Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 413–437). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Wilbers, J., & Duit, R. (2006). Post-festum and heuristic analogies. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 37–49). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259–1272.

    Article  Google Scholar 

  • Zook, K. B. (1991). Effects of analogical processes on learning and misrepresentation. Educational Psychology Review, 3(1), 41–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gilbert, J.K., Justi, R. (2016). Analogies in Modelling-Based Teaching and Learning. In: Modelling-based Teaching in Science Education. Models and Modeling in Science Education, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-29039-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29039-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29038-6

  • Online ISBN: 978-3-319-29039-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics