Skip to main content

Quantum Laser Theory: Langevin Approach

  • Chapter
  • First Online:
Quantum Optics
  • 3105 Accesses

Abstract

In this chapter, we study the Laser Theory using the Langevin Approach. We include the influence of pump statistics.

In the previous chapter, we studied the influence of the pump statistics on the amplitude and phase fluctuations of the laser radiation, making use of the Master Equation approach. We, thus, derived a generalized Master Equation in terms of a parameter p that represented the probability for an atom to be excited to the upper level, before entering into the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benkert, C., Scully, M.O., Bergou, J., Davidovich, L., Hillery, M., Orszag, M.: Role of pumping statistics in laser dynamics: quantum Langevin approach. Phys. Rev. A 41, 2756 (1990)

    Article  ADS  Google Scholar 

  2. For a different approach to pump noise, see: Machida, S., Yamamoto, Y., Itaya, Y.: Observation of amplitude squeezing in a constant-current-driven semiconductor laser. Phys. Rev. Lett. 58, 100 (1987); Marte, M., Ritsch, H., Walls, D.F.: Quantum statistics of a squeezed-pump laser. Phys. Rev. Lett. 61, 1093 (1988)

    Google Scholar 

  3. For many papers on the various interpretations of the quantum phase, see for example: Schleich, W.P., Barnett, S.M.W. (eds.) Quantum Phase and Quantum Phase Measurements, vol. T48. Physica Scripta, Stockholm (1993)

    Google Scholar 

  4. Schawlow, A.L., Townes, C.H.: Infrared and optical masers. Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  5. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  6. Gardiner, C.W.: Handbook of Stochastic Processes. Springer, Berlin (1985)

    Google Scholar 

  7. Fontenelle, M.T., Davidovich, L.: Sub-Poissonian light from a laser with an injected signal. Phys. Rev. A 51, 2560 (1995)

    Article  ADS  Google Scholar 

  8. Choa, F.S., Shih, M.H., Fan, J.Y., Simonis, G.J., Liu, P.L., Tanburn-Ek, T., Logan, R.A., Trang, W.T., Sargent, A.M.: Very low threshold 1.55 μm grating coupled surface-emitting lasers for optical signal processing and interconnect. App. Phys. Lett. 67, 2777 (1995)

    Google Scholar 

  9. Huffaken, D.L., Shin, J., Deppe, D.G.: Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement. App. Phys. Lett. 66, 1723 (1995); Huffaken, D.L., Deng, H., Deng, Q., Deppe, D.G.: Ring and stripe oxide-confined vertical cavity surface-emitting lasers. App. Phys. Lett. 69, 3477 (1997)

    Google Scholar 

  10. Feit, Z., McDonald, M., Woods, R.J., Archambault, V., Mak, P.: Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers. App. Phys. Lett. 68, 738 (1996)

    Article  ADS  Google Scholar 

  11. Taniguchi, H., Tomisawa, H., Kido, J.: Ultra low threshold europium chelate laser in morphology dependent resonances. App. Phys. Lett. 66, 1578 (1995); Tanosaki, S., Taniguchi, H., Tsujita, K., Inaba, H.: Microdroplet dye laser enhancing effects in dye highly scattering intralipid mixture. App. Phys. Lett. 69, 719 (1996)

    Google Scholar 

  12. An, K., Childs, J.J., Desari, R.R., Feld, M.S.: Microlaser: a laser with one atom in an optical resonator. Phys. Rev. Lett. 73, 3375 (1994)

    Article  ADS  Google Scholar 

  13. Protschenko, I., Domokos, P., Lefevre-Seguin, L., Hare, J., Raimond, J.M., Davidovich, L.: Quantum theory of a thresholdless laser. Phys. Rev. A 59, 1667( 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orszag, M. (2016). Quantum Laser Theory: Langevin Approach. In: Quantum Optics. Springer, Cham. https://doi.org/10.1007/978-3-319-29037-9_12

Download citation

Publish with us

Policies and ethics