Skip to main content

Weak Disconjugacy for Linear Hamiltonian Systems

  • Chapter
  • First Online:
  • 884 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 36))

Abstract

The analysis of nonautonomous linear Hamiltonian systems with the disconjugacy property is a classical branch of the theory of linear ODEs. One of the most interesting consequences of this property is the existence of principal functions, which constitute an extension of the concept of Weyl functions to many situations where exponential dichotomy is lacking. In this chapter, the disconjugacy property is relaxed to the so-called weak disconjugacy, which can be characterized in terms of the property of nonoscillation of the system. In what follows, a family of systems is considered. It is proved that the so-called uniform weak disconjugacy of all the systems suffices to ensure the existence of the principal functions, whose main properties are then described. And it is shown that this setting is less restrictive than that of disconjugacy. In the rest of the chapter, relations are established between the characteristics of the principal functions for a given family and: (1) the properties of the Lyapunov exponents, (2) the properties of the rotation number, and (3) the existence of exponential dichotomy. The consequences of the analysis presented here will be fundamental in the developments of the remaining chapters of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

    Google Scholar 

  2. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  3. R. Fabbri, R. Johnson, S. Novo, C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl. 380 (2011), 853–864.

    Google Scholar 

  4. R. Fabbri, R. Johnson, C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes, Discrete Contin. Dynam. Systems, Ser. A 9 (3) (2003), 677–704.

    Google Scholar 

  5. R. Fabbri, R. Johnson, C. Núñez, Disconjugacy and the rotation number for linear, non-autonomous Hamiltonian systems, Ann. Mat. Pura App. 185 (2006), S3–S21.

    Google Scholar 

  6. I.M. Gel’fand, V.B. Lidskiĭ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Amer. Mat. Soc. Transl. (2) 8 (1958), 143–181.

    Google Scholar 

  7. P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.

    MATH  Google Scholar 

  8. E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975.

    MATH  Google Scholar 

  9. R. Johnson, M. Nerurkar, On null controllability of linear systems with recurrent coefficients and constrained controls, J. Dynam. Differential Equations 4 (2) (1992), 259–273.

    Google Scholar 

  10. R. Johnson, M. Nerurkar, Stabilization and random linear regulator problem for random linear control processes, J. Math. Anal. Appl. 197 (1996), 608–629.

    Google Scholar 

  11. R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998.

    Google Scholar 

  12. R. Johnson, S. Novo, C. Núñez, R. Obaya, Uniform weak disconjugacy and principal solutions for linear Hamiltonian systems, Recent Advances in Delay Differential and Difference Equations, Springer Proceedings in Mathematics & Statistics 94 (2014), 131–159.

    Article  MATH  Google Scholar 

  13. R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A (2000), 803–822.

    Google Scholar 

  14. R. Johnson, S. Novo, R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems, Illinois J. Math. 45 (2001), 1045–1079.

    Google Scholar 

  15. R. Johnson, C. Núñez, Remarks on linear-quadratic dissipative control systems Discr. Cont. Dyn. Sys. B, 20 (3) (2015), 889–914.

    Google Scholar 

  16. R. Johnson, C. Núñez, R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations 25 (3) (2013), 679–713.

    Google Scholar 

  17. T. Kato, Perturbation Theory for Linear Operators, Corrected Printing of the Second Edition, Springer-Verlag, Berlin, Heidelberg 1995.

    Google Scholar 

  18. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Mathematical Topics 6, Akademie Verlag, Berlin, 1995.

    MATH  Google Scholar 

  19. V.B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations, Dokl. Akad. Nauk. SSSR 102 (1955), 877–880. (English translation in: NASA Technical Translation, P-14, 696.)

    Google Scholar 

  20. V.M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, Diff. Urav. 4 No. 3 (1968), 391–396.

    Google Scholar 

  21. J. Moser, An example of a Schrödinger equation with almost-periodic potential and no-where dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.

    Google Scholar 

  22. W.T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl. 9 (1964), 397–423.

    Google Scholar 

  23. W.T. Reid, A continuity property of principal solutions of linear hamiltonian differential systems, Scripta Math. 29 (1973), 337–350.

    Google Scholar 

  24. W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer-Verlag, New York, 1980.

    Book  Google Scholar 

  25. H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1970.

    MATH  Google Scholar 

  26. I. Schneiberg, Zeros of integrals along trajectories of ergodic systems, Funk. Anal. Appl., 19 (1985), 486–490.

    MathSciNet  Google Scholar 

  27. P. Šepitka, R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (1) (2014), 57–91.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Šepitka, R. Šimon Hilscher, Principal Solutions at Infinity of Given Ranks for Nonoscillatory Linear Hamiltonian Systems, J. Dynam. Differential Equations 27 (1) (2015), 137–175.

    Google Scholar 

  29. R.E. Vinograd, A problem suggested by N. P. Erugin, Diff. Urav. 11 No. 4 (1975), 632–638.

    Google Scholar 

  30. V.A. Yakubovich, Arguments on the group of symplectic matrices, Mat. Sb. 55 (97) (1961), 255–280 (Russian).

    Google Scholar 

  31. V.A. Yakubovich, Oscillatory properties of the solutions of canonical equations, Amer. Math. Soc. Transl. Ser. 2 42 (1964), 247–288.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, R., Obaya, R., Novo, S., Núñez, C., Fabbri, R. (2016). Weak Disconjugacy for Linear Hamiltonian Systems. In: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Developments in Mathematics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-29025-6_5

Download citation

Publish with us

Policies and ethics